Which of the following expressions is equivalent to [tex]\frac{8p + 8}{-32p + 4}[/tex]?

Choose 1 answer:

A. [tex]\frac{p+2}{-4p+1}[/tex]

B. [tex]\frac{2p+2}{-8p+1}[/tex]

C. [tex]\frac{2p+2}{8p+1}[/tex]

D. [tex]p+1[/tex]



Answer :

To determine which of the given expressions is equivalent to [tex]\(\frac{8p + 8}{-32p + 4}\)[/tex], we need to simplify the given fraction step by step.

1. Simplify the numerator and the denominator separately:
The numerator is [tex]\(8p + 8\)[/tex]. We can factor out an 8:
[tex]\[ 8p + 8 = 8(p + 1) \][/tex]

The denominator is [tex]\(-32p + 4\)[/tex]. We can factor out a 4:
[tex]\[ -32p + 4 = 4(-8p + 1) \][/tex]

2. Rewrite the expression using factored forms:
[tex]\[ \frac{8(p + 1)}{4(-8p + 1)} \][/tex]

3. Simplify the fraction by dividing the numerator and the denominator by 4:
[tex]\[ \frac{8(p + 1)}{4(-8p + 1)} = \frac{8}{4} \cdot \frac{p + 1}{-8p + 1} = 2 \cdot \frac{p + 1}{-8p + 1} \][/tex]

Therefore, the simplified form of the given expression is:
[tex]\[ \frac{2(p + 1)}{-8p + 1} \][/tex]

Now we compare this result with the given options:

(A) [tex]\(\frac{p + 2}{-4p + 1}\)[/tex]

(B) [tex]\(\frac{2p + 2}{-8p + 1}\)[/tex]

(C) [tex]\(\frac{2p + 2}{8p + 1}\)[/tex]

(D) [tex]\(p + 1\)[/tex]

The equivalent expression to [tex]\(\frac{2(p + 1)}{-8p + 1}\)[/tex] is

(B) [tex]\(\frac{2p + 2}{-8p + 1}\)[/tex].

Therefore, the correct choice is [tex]\(\boxed{B}\)[/tex].