For this question, use the following MINITAB output for a two-way table:

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
1 &
\begin{tabular}{c}
C1 \\
76 \\
59.00
\end{tabular} &
\begin{tabular}{c}
C2 \\
53 \\
59.00
\end{tabular} &
\begin{tabular}{c}
C3 \\
59 \\
59.00
\end{tabular} &
\begin{tabular}{c}
C4 \\
48 \\
59.00
\end{tabular} &
\begin{tabular}{c}
Total \\
236
\end{tabular} \\
\hline
2 &
\begin{tabular}{c}
124 \\
141.00
\end{tabular} &
\begin{tabular}{c}
147 \\
141.00
\end{tabular} &
\begin{tabular}{c}
141 \\
141.00
\end{tabular} &
\begin{tabular}{c}
152 \\
141.00
\end{tabular} &
564 \\
\hline
Total & 200 & 200 & 200 & 200 & 800 \\
\hline
\multicolumn{6}{|c|}{
\begin{tabular}{c}
\begin{align*}
\text{ChiSq} = & 4.898 + 0.610 + 0.000 + 2.051 \\
& + 2.050 + 0.255 + 0.000 + 0.858 = 10.722
\end{align*}
\end{tabular}
} \\
\hline
\end{tabular}
\][/tex]

The [tex]$P$[/tex]-value for this chi-square statistic is:

A. between .05 and .10

B. between .01 and .02

C. between .02 and .025

D. between .025 and .05

E. between .005 and .01



Answer :

We begin by examining the data given:

The chi-square statistic (ChiSq) is provided directly:
[tex]\[ \chi^2 = 10.722 \][/tex]

Next, we must determine the degrees of freedom ([tex]\(df\)[/tex]) for this chi-square test. The degrees of freedom in a chi-square test for an [tex]\(r \times c\)[/tex] contingency table is calculated as:
[tex]\[ df = (r-1) \times (c-1) \][/tex]
where [tex]\( r \)[/tex] is the number of rows and [tex]\( c \)[/tex] is the number of columns.

In our table:
- The number of rows ([tex]\(r\)[/tex]) is 2 (labeled as 1 and 2).
- The number of columns ([tex]\(c\)[/tex]) is 4 (labeled as C1, C2, C3, and C4).

Therefore, the degrees of freedom are:
[tex]\[ df = (2 - 1) \times (4 - 1) = 1 \times 3 = 3 \][/tex]

Next, we need to find the p-value corresponding to the chi-square statistic of 10.722 with 3 degrees of freedom. After referring to chi-square distribution tables or using appropriate statistical tools, we find:

[tex]\[ \text{p-value} = 0.013328146018433728 \][/tex]

Now we determine which range the p-value falls into:

- [tex]\(0.05 < p \leq 0.10\)[/tex]
- [tex]\(0.01 < p \leq 0.02\)[/tex]
- [tex]\(0.02 < p \leq 0.025\)[/tex]
- [tex]\(0.025 < p \leq 0.05\)[/tex]
- [tex]\(0.005 < p \leq 0.01\)[/tex]

Given the p-value:
[tex]\[ 0.013328146018433728 \][/tex]

Clearly:
[tex]\[ 0.01 < 0.013328146018433728 \leq 0.02 \][/tex]

Hence, the p-value falls into the range:
[tex]\[ \text{0.01 to 0.02} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{B. \text{between } 0.01 \text{ and } 0.02.} \][/tex]