If [tex]JM = 5x - 8[/tex] and [tex]LM = 2x - 6[/tex], which expression represents [tex]JL[/tex]?

A. [tex]3x - 2[/tex]
B. [tex]3x - 14[/tex]
C. [tex]7x - 14[/tex]
D. [tex]7x - 2[/tex]



Answer :

To find the expression that represents [tex]\( JL \)[/tex], we start with the given expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:

[tex]\[ JM = 5x - 8 \][/tex]

[tex]\[ LM = 2x - 6 \][/tex]

We are asked to find the expression for [tex]\( JL \)[/tex], which is the sum of [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]. Therefore, we add the given expressions:

[tex]\[ JL = JM + LM \][/tex]

Substituting the given expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:

[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

Next, we combine like terms. First, we combine the terms with [tex]\( x \)[/tex]:

[tex]\[ 5x + 2x = 7x \][/tex]

Then, we combine the constant terms:

[tex]\[ -8 - 6 = -14 \][/tex]

So, the expression for [tex]\( JL \)[/tex] is:

[tex]\[ JL = 7x - 14 \][/tex]

Among the given options, the correct expression that represents [tex]\( JL \)[/tex] is:

[tex]\[ 7x - 14 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{7x - 14} \][/tex]