To find the expression that represents [tex]\( JL \)[/tex], we start with the given expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:
[tex]\[
JM = 5x - 8
\][/tex]
[tex]\[
LM = 2x - 6
\][/tex]
We are asked to find the expression for [tex]\( JL \)[/tex], which is the sum of [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]. Therefore, we add the given expressions:
[tex]\[
JL = JM + LM
\][/tex]
Substituting the given expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:
[tex]\[
JL = (5x - 8) + (2x - 6)
\][/tex]
Next, we combine like terms. First, we combine the terms with [tex]\( x \)[/tex]:
[tex]\[
5x + 2x = 7x
\][/tex]
Then, we combine the constant terms:
[tex]\[
-8 - 6 = -14
\][/tex]
So, the expression for [tex]\( JL \)[/tex] is:
[tex]\[
JL = 7x - 14
\][/tex]
Among the given options, the correct expression that represents [tex]\( JL \)[/tex] is:
[tex]\[
7x - 14
\][/tex]
Therefore, the correct answer is:
[tex]\[
\boxed{7x - 14}
\][/tex]