Charles begins finding the volume of a trapezoidal prism using the formula [tex]A=\frac{1}{2}\left(b_1+b_2\right)h[/tex] to find the prism's base area.

[tex]\[
\begin{array}{l}
A=\frac{1}{2}((x+4)+(x+2)) x \\
A=\frac{1}{2}(2x+6) x \\
A=(x+3) x \\
A=x^2+3x
\end{array}
\][/tex]

Which expression can be used to represent the volume of the trapezoidal prism?

A. [tex]2x^3+6x^2[/tex]
B. [tex]x^3+6x^2[/tex]
C. [tex]x^3+3x^2[/tex]
D. [tex]2x^3+3x^2[/tex]



Answer :

To find the volume of a trapezoidal prism, we need to use the formula for the volume of a prism, [tex]\( V = A \cdot \text{height} \)[/tex], where [tex]\( A \)[/tex] is the area of the base and [tex]\(\text{height} \)[/tex] is the perpendicular distance between the two bases.

From the given expressions for calculating the base area [tex]\( A \)[/tex]:

[tex]\[ \begin{array}{l} A=\frac{1}{2}((x+4)+(x+2)) x \\ A=\frac{1}{2}(2 x+6) x \\ A=(x+3) x \\ A=x^2+3 x \end{array} \][/tex]

We have derived that [tex]\( A = x^2 + 3x \)[/tex].

Next, we need to consider the height of the trapezoidal prism, which is given as [tex]\( 2x \)[/tex].

The volume [tex]\( V \)[/tex] can then be calculated as:

[tex]\[ V = A \cdot \text{height} \][/tex]

Substituting the values we have:

[tex]\[ V = (x^2 + 3x) \cdot 2x \][/tex]

Multiplying the terms inside the parentheses by [tex]\( 2x \)[/tex]:

[tex]\[ V = 2x \cdot (x^2 + 3x) \][/tex]

This expands to:

[tex]\[ V = 2x \cdot x^2 + 2x \cdot 3x \][/tex]

Simplifying each term, we get:

[tex]\[ V = 2x^3 + 6x^2 \][/tex]

Thus, the expression that represents the volume of the trapezoidal prism is:

[tex]\[ 2x^3 + 6x^2 \][/tex]

So, the correct answer is:

[tex]\[ \boxed{2x^3 + 6x^2} \][/tex]