Answer :

To solve the given equation [tex]\( 1 - 4p + 6p = 5(-3 + 4p) - 6(1 + 3p) \)[/tex], let’s go through the steps systematically:

1. Combine like terms on the left-hand side:

[tex]\[ 1 - 4p + 6p = 1 + 2p \][/tex]

So the equation now looks like this:

[tex]\[ 1 + 2p = 5(-3 + 4p) - 6(1 + 3p) \][/tex]

2. Distribute the constants on the right-hand side:

[tex]\[ 5(-3 + 4p) = 5 \cdot (-3) + 5 \cdot 4p = -15 + 20p \][/tex]

[tex]\[ -6(1 + 3p) = -6 \cdot 1 - 6 \cdot 3p = -6 - 18p \][/tex]

Therefore, the equation now becomes:

[tex]\[ 1 + 2p = -15 + 20p - 6 - 18p \][/tex]

3. Combine like terms again on the right-hand side:

[tex]\[ -15 - 6 + 20p - 18p = -21 + 2p \][/tex]

So, we now have:

[tex]\[ 1 + 2p = -21 + 2p \][/tex]

4. Subtract [tex]\(2p\)[/tex] from both sides:

[tex]\[ 1 + 2p - 2p = -21 + 2p - 2p \][/tex]

Simplifying, we get:

[tex]\[ 1 = -21 \][/tex]

This statement [tex]\(1 = -21\)[/tex] is obviously a contradiction and is never true. Thus, there is no value of [tex]\( p \)[/tex] that can satisfy the given equation.

Conclusion:

There are no solutions to the equation [tex]\( 1 - 4p + 6p = 5(-3 + 4p) - 6(1 + 3p) \)[/tex].

In other words, the solution set for [tex]\( p \)[/tex] is the empty set: [tex]\( \boxed{[]} \)[/tex].