Solve for [tex]$x$[/tex].

[tex]$5x - 6 = 3x + 10$[/tex]

A. [tex][tex]$x = 0.5$[/tex][/tex]
B. [tex]$x = 1$[/tex]
C. [tex]$x = 2$[/tex]
D. [tex][tex]$x = 8$[/tex][/tex]



Answer :

To solve the equation [tex]\( 5x - 6 = 3x + 10 \)[/tex] for [tex]\( x \)[/tex], follow these detailed steps:

1. Start with the given equation:
[tex]\[ 5x - 6 = 3x + 10 \][/tex]

2. Move all terms containing [tex]\( x \)[/tex] to one side of the equation and the constant terms to the other side:
[tex]\[ 5x - 3x = 10 + 6 \][/tex]

3. Simplify both sides of the equation:
[tex]\[ 2x = 16 \][/tex]

4. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ x = \frac{16}{2} \][/tex]

5. Simplify the fraction:
[tex]\[ x = 8 \][/tex]

So, the value of [tex]\( x \)[/tex] that satisfies the equation is [tex]\( x = 8 \)[/tex]. This is the correct answer from the given options:
- [tex]\( x = 0.5 \)[/tex]
- [tex]\( x = 1 \)[/tex]
- [tex]\( x = 2 \)[/tex]
- [tex]\( x = 8 \)[/tex]

Therefore, the solution is [tex]\( x = 8 \)[/tex].