Use the quadratic formula to solve for [tex]$x$[/tex].

[tex]8x^2 - 7x = -1[/tex]

Round your answer to the nearest hundredth. If there is more than one solution, separate them with commas.



Answer :

To solve the quadratic equation [tex]\( 8x^2 - 7x + 1 = 0 \)[/tex] using the quadratic formula, we follow these steps:

The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, [tex]\( a = 8 \)[/tex], [tex]\( b = -7 \)[/tex], and [tex]\( c = 1 \)[/tex].

1. Calculate the discriminant:

[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]

Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \text{Discriminant} = (-7)^2 - 4 \cdot 8 \cdot 1 = 49 - 32 = 17 \][/tex]

2. Calculate the two solutions using the quadratic formula:

[tex]\[ x_1 = \frac{-b + \sqrt{\text{Discriminant}}}{2a}, \quad x_2 = \frac{-b - \sqrt{\text{Discriminant}}}{2a} \][/tex]

Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and the discriminant:
[tex]\[ x_1 = \frac{-(-7) + \sqrt{17}}{2 \cdot 8} = \frac{7 + \sqrt{17}}{16} \][/tex]
[tex]\[ x_2 = \frac{-(-7) - \sqrt{17}}{2 \cdot 8} = \frac{7 - \sqrt{17}}{16} \][/tex]

3. Calculate the exact values of [tex]\(x_1\)[/tex] and [tex]\(x_2\)[/tex]:

[tex]\[ x_1 \approx \frac{7 + 4.1231}{16} \approx \frac{11.1231}{16} \approx 0.6952 \][/tex]
[tex]\[ x_2 \approx \frac{7 - 4.1231}{16} \approx \frac{2.8769}{16} \approx 0.1798 \][/tex]

4. Round the solutions to the nearest hundredth:

[tex]\[ x_1 \approx 0.70 \][/tex]
[tex]\[ x_2 \approx 0.18 \][/tex]

Therefore, the solutions to the quadratic equation [tex]\( 8x^2 - 7x + 1 = 0 \)[/tex], rounded to the nearest hundredth, are:
[tex]\[ x \approx 0.70, 0.18 \][/tex]