A student rings a brass bell with a frequency of 100 Hz. The sound wave travels through brass, air, and glass. What is the wavelength of the wave in brass?

[tex]\[
\begin{tabular}{|c|c|}
\hline
Medium & \begin{tabular}{c}
Wave speed \\
$(m/s)$
\end{tabular} \\
\hline
Brass & 4,700 \\
\hline
Air & 346 \\
\hline
Glass & 5,640 \\
\hline
\end{tabular}
\][/tex]

A. 0.21 m
B. 4.7 m
C. 47 m
D. 0.021 m



Answer :

To determine the wavelength of the sound wave traveling through brass, we need to use the formula that relates wave speed, frequency, and wavelength:

[tex]\[ \text{Wavelength} (\lambda) = \frac{\text{Speed of the wave} (v)}{\text{Frequency} (f)} \][/tex]

Given:
- Frequency of the wave, [tex]\( f = 100 \text{ Hz} \)[/tex]
- Speed of the wave in brass, [tex]\( v = 4700 \text{ m/s} \)[/tex]

Substituting the given values into the formula:

[tex]\[ \lambda = \frac{4700 \text{ m/s}}{100 \text{ Hz}} \][/tex]

Calculating the wavelength:

[tex]\[ \lambda = \frac{4700}{100} = 47 \text{ m} \][/tex]

Therefore, the wavelength of the wave in brass is:

[tex]\[ \boxed{47 \text{ m}} \][/tex]

The correct answer is:
C. 47 m