Find the [tex]\( x \)[/tex]-intercept and [tex]\( y \)[/tex]-intercept of the line.

[tex]\[ -7x + 6y = 9 \][/tex]

[tex]\( x \)[/tex]-intercept: [tex]\(\square\)[/tex]

[tex]\( y \)[/tex]-intercept: [tex]\(\square\)[/tex]



Answer :

To find the intercepts of the given line equation [tex]\( -7x + 6y = 9 \)[/tex], we follow these steps:

### Finding the [tex]\(x\)[/tex]-Intercept

1. The [tex]\(x\)[/tex]-intercept is the point where the line crosses the [tex]\(x\)[/tex]-axis. At this point, [tex]\(y = 0\)[/tex].
2. Substitute [tex]\(y = 0\)[/tex] into the equation [tex]\( -7x + 6y = 9 \)[/tex]:

[tex]\[ -7x + 6(0) = 9 \][/tex]

3. Simplify the equation:

[tex]\[ -7x = 9 \][/tex]

4. Solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{9}{-7} \][/tex]

5. Simplifying the fraction:

[tex]\[ x = -1.2857142857142858 \][/tex]

So, the [tex]\(x\)[/tex]-intercept is [tex]\(-1.2857142857142858\)[/tex].

### Finding the [tex]\(y\)[/tex]-Intercept

1. The [tex]\(y\)[/tex]-intercept is the point where the line crosses the [tex]\(y\)[/tex]-axis. At this point, [tex]\(x = 0\)[/tex].
2. Substitute [tex]\(x = 0\)[/tex] into the equation [tex]\( -7x + 6y = 9 \)[/tex]:

[tex]\[ -7(0) + 6y = 9 \][/tex]

3. Simplify the equation:

[tex]\[ 6y = 9 \][/tex]

4. Solve for [tex]\(y\)[/tex]:

[tex]\[ y = \frac{9}{6} \][/tex]

5. Simplifying the fraction:

[tex]\[ y = 1.5 \][/tex]

So, the [tex]\(y\)[/tex]-intercept is [tex]\(1.5\)[/tex].

Therefore, the intercepts are:
- [tex]\(x\)[/tex]-intercept: [tex]\(-1.2857142857142858\)[/tex]
- [tex]\(y\)[/tex]-intercept: [tex]\(1.5\)[/tex]