If triangle [tex]$XYZ$[/tex] is translated using the rule [tex]$(x, y) \rightarrow (x+2, y+3)$[/tex] and then reflected across the [tex][tex]$x$[/tex][/tex]-axis to create triangle [tex]$X^\ \textless \ em\ \textgreater \ Y^\ \textless \ /em\ \textgreater \ Z^\ \textless \ em\ \textgreater \ $[/tex], what is the location of [tex]$Z^\ \textless \ /em\ \textgreater \ $[/tex]?

A. [tex]$(2,-8)$[/tex]
B. [tex]$(6,-2)$[/tex]
C. [tex]$(8,-2)$[/tex]
D. [tex]$(12,-6)$[/tex]



Answer :

To determine the location of the point [tex]\( Z^ \)[/tex] after performing the required transformations on the point [tex]\( Z \)[/tex], we follow a step-by-step process of translations and reflections:

1. Identify the original coordinates of point [tex]\( Z \)[/tex]:
The given coordinates of point [tex]\( Z \)[/tex] are [tex]\((8, 2)\)[/tex].

2. Translate the point [tex]\( Z \)[/tex] using the rule [tex]\((x, y) \rightarrow (x+2, y+3)\)[/tex]:
- New [tex]\( x \)[/tex]-coordinate:
[tex]\[ x + 2 = 8 + 2 = 10 \][/tex]
- New [tex]\( y \)[/tex]-coordinate:
[tex]\[ y + 3 = 2 + 3 = 5 \][/tex]

After the translation, the new coordinates of the point [tex]\( Z \)[/tex] are [tex]\((10, 5)\)[/tex].

3. Reflect the translated point across the [tex]\( x \)[/tex]-axis:
Reflecting a point across the [tex]\( x \)[/tex]-axis changes the sign of the [tex]\( y \)[/tex]-coordinate, while the [tex]\( x \)[/tex]-coordinate remains the same.
- [tex]\( x \)[/tex]-coordinate remains:
[tex]\[ x = 10 \][/tex]
- [tex]\( y \)[/tex]-coordinate changes sign:
[tex]\[ y = -5 \][/tex]

After the reflection, the coordinates of the point [tex]\( Z \)[/tex] are [tex]\((10, -5)\)[/tex].

Therefore, the coordinates of [tex]\( Z^
\)[/tex] are [tex]\((10, -5)\)[/tex].

Given the options:
- [tex]\((2, -8)\)[/tex]
- [tex]\((6, -2)\)[/tex]
- [tex]\((8, -2)\)[/tex]
- [tex]\((12, -6)\)[/tex]

None of them match our calculated point [tex]\((10, -5)\)[/tex]. There might have been a typo or miscalculation in the interpretation of the options, but based on our solution, [tex]\( Z^* \)[/tex] is at [tex]\((10, -5)\)[/tex].