Evaluate [tex]\frac{\left(z^2\right)^4}{5 z^5}[/tex] when [tex]z=5[/tex] and simplify.
Write the answer as a positive integer, without any exponents.

The solution is [tex]\square[/tex]



Answer :

To evaluate the expression [tex]\(\frac{(z^2)^4}{5z^5}\)[/tex] when [tex]\(z = 5\)[/tex], follow these steps:

1. Substitute [tex]\(z = 5\)[/tex] into the expression:

[tex]\[ \frac{(5^2)^4}{5 \cdot 5^5} \][/tex]

2. Simplify the numerator [tex]\((5^2)^4\)[/tex]:

[tex]\[ 5^2 = 25 \][/tex]
[tex]\[ (25)^4 = 25^4 \][/tex]

Rewriting [tex]\(25\)[/tex] as [tex]\(5^2\)[/tex], we get:
[tex]\[ 25^4 = (5^2)^4 = 5^{8} \][/tex]

Thus, the numerator simplifies to [tex]\(5^8\)[/tex].

3. Simplify the denominator [tex]\(5 \cdot 5^5\)[/tex]:

[tex]\[ 5 \cdot 5^5 \][/tex]
Using the properties of exponents, this can be simplified to:
[tex]\[ 5^1 \cdot 5^5 = 5^{1+5} = 5^6 \][/tex]

4. Simplify the fraction [tex]\(\frac{5^8}{5^6}\)[/tex]:

Using the property of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex] where [tex]\(a \neq 0\)[/tex]:

[tex]\[ \frac{5^8}{5^6} = 5^{8-6} = 5^2 \][/tex]

5. Calculate [tex]\(5^2\)[/tex]:

[tex]\[ 5^2 = 25 \][/tex]

Therefore, the simplified value of the expression [tex]\(\frac{(z^2)^4}{5z^5}\)[/tex] when [tex]\(z = 5\)[/tex] is [tex]\(\boxed{25}\)[/tex].