Answer :

To solve the given problem [tex]\( N^* = \sqrt{\sqrt{13} + 1} \cdot \sqrt{\sqrt{13} - 1} - 2(\sqrt{3} - 8) \)[/tex], let's break it down into smaller, manageable steps:

1. Calculate the first multiplicative term:
[tex]\[ \text{term}_1 = \sqrt{\sqrt{13} + 1} \][/tex]
We find:
[tex]\[ \text{term}_1 = 2.146054816509585 \][/tex]

2. Calculate the second multiplicative term:
[tex]\[ \text{term}_2 = \sqrt{\sqrt{13} - 1} \][/tex]
We find:
[tex]\[ \text{term}_2 = 1.6141720092555158 \][/tex]

3. Multiply the two terms together:
[tex]\[ \text{product\_terms} = \text{term}_1 \cdot \text{term}_2 \][/tex]
We calculate:
[tex]\[ \text{product\_terms} = 2.146054816509585 \cdot 1.6141720092555158 = 3.4641016151377544 \][/tex]

4. Calculate the second term:
[tex]\[ \text{second\_term} = 2(\sqrt{3} - 8) \][/tex]
We find:
[tex]\[ \sqrt{3} \approx 1.732 \][/tex]
Then:
[tex]\[ \text{second\_term} = 2(1.732 - 8) = 2(-6.268) = -12.536 \][/tex]

5. Combine the results:
[tex]\[ N^* = \text{product\_terms} - \text{second\_term} \][/tex]
Thus:
[tex]\[ N^* = 3.4641016151377544 - (-12.536) = 3.4641016151377544 + 12.536 = 16.0 \][/tex]

So, the final value is:
[tex]\[ N^* = 16.0 \][/tex]