What is the volume of the bookend?

Hint: The volume of a rectangular prism is the product of its length, width, and height.

A. 108 cubic inches
B. [tex]5 \sqrt{3}+9 \sqrt{2}[/tex] cubic inches
C. 216 cubic inches
D. [tex]36 \sqrt{12}[/tex] cubic inches



Answer :

To determine the volume of the bookend, we need to compare the given options to see which one makes sense based on standard volume calculations. The volume of a rectangular prism can be computed using the formula:

[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]

The given answer choices for the volume are:

A. [tex]\( 108 \)[/tex] cubic inches
B. [tex]\( 5\sqrt{3} + 9\sqrt{2} \)[/tex] cubic inches
C. [tex]\( 216 \)[/tex] cubic inches
D. [tex]\( 36\sqrt{12} \)[/tex] cubic inches

First, let's assess each of these options.

1. Option A: [tex]\( 108 \)[/tex] cubic inches

This is a straightforward numerical value.

2. Option B: [tex]\( 5\sqrt{3} + 9\sqrt{2} \)[/tex] cubic inches

We can evaluate this expression approximately:
[tex]\[ 5\sqrt{3} \approx 5 \times 1.732 \approx 8.66 \][/tex]
[tex]\[ 9\sqrt{2} \approx 9 \times 1.414 \approx 12.726 \][/tex]
[tex]\[ 5\sqrt{3} + 9\sqrt{2} \approx 8.66 + 12.726 = 21.388 \][/tex]

3. Option C: [tex]\( 216 \)[/tex] cubic inches

This is another straightforward numerical value.

4. Option D: [tex]\( 36\sqrt{12} \)[/tex] cubic inches

We can evaluate this expression approximately:
[tex]\[ \sqrt{12} \approx \sqrt{4 \times 3} = 2\sqrt{3} \approx 2 \times 1.732 = 3.464 \][/tex]
[tex]\[ 36\sqrt{12} \approx 36 \times 3.464 = 124.708 \][/tex]

Given these computations:

- Option A: [tex]\( 108 \)[/tex] cubic inches
- Option B: [tex]\( \approx 21.388 \)[/tex] cubic inches
- Option C: [tex]\( 216 \)[/tex] cubic inches
- Option D: [tex]\( \approx 124.708 \)[/tex] cubic inches

The correct option which seems appropriate and likely for the volume of a bookend among the given choices is:

A. 108 cubic inches