Mr. Potter's physical science classes conducted an experiment to determine the density of aluminum. Here are the density values each class period came up with:

- [tex]$1^{\text{st}}$[/tex] hour: [tex]$3.1 \, \text{g/ml}$[/tex]
- [tex]$2^{\text{nd}}$[/tex] hour: [tex]$3.05 \, \text{g/ml}$[/tex]
- [tex]$3^{\text{rd}}$[/tex] hour: [tex]$1.9 \, \text{g/ml}$[/tex]
- [tex]$4^{\text{th}}$[/tex] hour: [tex]$2.35 \, \text{g/ml}$[/tex]
- [tex]$5^{\text{th}}$[/tex] hour: [tex]$4.2 \, \text{g/ml}$[/tex]
- [tex]$6^{\text{th}}$[/tex] hour: [tex]$4.0 \, \text{g/ml}$[/tex]

If aluminum's true density is [tex]$2.7 \, \text{g/ml}$[/tex], how would you group the class values based on accuracy?

a. Group: [tex]$1^{\text{st}}, 3^{\text{rd}}, 5^{\text{th}},$[/tex] and [tex]$6^{\text{th}}$[/tex] hours, with one recorded decimal place in their values
Group: [tex]$2^{\text{nd}}$[/tex] and [tex]$4^{\text{th}}$[/tex] hours, with two recorded decimal places in their values

b. Group: [tex]$3^{\text{rd}}$[/tex] and [tex]$4^{\text{th}}$[/tex] hours, with values under the true density
Group: [tex]$1^{\text{st}}, 2^{\text{nd}}, 5^{\text{th}},$[/tex] and [tex]$6^{\text{th}}$[/tex] hours, with values over the true density

c. Group: [tex]$3^{\text{rd}}$[/tex] hour, with a 1 value
Group: [tex]$4^{\text{th}}$[/tex] hour, with a 2 value
Group: [tex]$1^{\text{st}}$[/tex] and [tex]$2^{\text{nd}}$[/tex] hours, with 3 values
Group: [tex]$5^{\text{th}}$[/tex] and [tex]$6^{\text{th}}$[/tex] hours, with 4 values

d. Group all classes as accurate

Please select the best answer from the choices provided.



Answer :

Let's examine the density values provided by Mr. Potter's physical science classes and group them based on their relation to the true density of aluminum, which is [tex]\(2.7 \, \text{g/ml}\)[/tex].

Given the density values:
- [tex]\(1^{\text{st }}\)[/tex] hour: [tex]\(3.1 \, \text{g/ml}\)[/tex]
- [tex]\(2^{\text{nd }}\)[/tex] hour: [tex]\(3.05 \, \text{g/ml}\)[/tex]
- [tex]\(3^{\text{rd }}\)[/tex] hour: [tex]\(1.9 \, \text{g/ml}\)[/tex]
- [tex]\(4^{\text{th }}\)[/tex] hour: [tex]\(2.35 \, \text{g/ml}\)[/tex]
- [tex]\(5^{\text{th }}\)[/tex] hour: [tex]\(4.2 \, \text{g/ml}\)[/tex]
- [tex]\(6^{\text{th }}\)[/tex] hour: [tex]\(4.0 \, \text{g/ml}\)[/tex]

In order to group these values based on their accuracy, determine which values are under the true density and which are over the true density:

Values under [tex]\(2.7 \, \text{g/ml}\)[/tex]:
- [tex]\(3^{\text{rd }}\)[/tex] hour: [tex]\(1.9 \, \text{g/ml}\)[/tex]
- [tex]\(4^{\text{th }}\)[/tex] hour: [tex]\(2.35 \, \text{g/ml}\)[/tex]

Values over [tex]\(2.7 \, \text{g/ml}\)[/tex]:
- [tex]\(1^{\text{st }}\)[/tex] hour: [tex]\(3.1 \, \text{g/ml}\)[/tex]
- [tex]\(2^{\text{nd }}\)[/tex] hour: [tex]\(3.05 \, \text{g/ml}\)[/tex]
- [tex]\(5^{\text{th }}\)[/tex] hour: [tex]\(4.2 \, \text{g/ml}\)[/tex]
- [tex]\(6^{\text{th }}\)[/tex] hour: [tex]\(4.0 \, \text{g/ml}\)[/tex]

By comparing these groupings with the provided choices, the correct grouping is:

Group:
- [tex]\(3^{\text{rd }}\)[/tex] and [tex]\(4^{\text{th }}\)[/tex] hours, with values under the true density
- [tex]\(1^{\text{st }}\)[/tex], [tex]\(2^{\text{nd }}\)[/tex], [tex]\(5^{\text{th }}\)[/tex], and [tex]\(6^{\text{th }}\)[/tex] hours, with values over the true density

Therefore, the best answer from the choices provided is:

b. Group: [tex]\(3^{\text{rd }}\)[/tex] and [tex]\(4^{\text{th }}\)[/tex] hours, with values under the true density
Group: [tex]\(1^{\text{st }}\)[/tex], [tex]\(2^{\text{nd }}\)[/tex], [tex]\(5^{\text{th }}\)[/tex], and [tex]\(6^{\text{th }}\)[/tex] hours, with values over the true density