For the piecewise function [tex]f(x)=\left\{\begin{array}{ll}x^2-2 & \text{if } x\ \textless \ 0 \\ -3x-2 & \text{if } x \geq 0\end{array}\right.[/tex], determine the range of the function.



Answer :

To determine the range of the piecewise function

[tex]\[ f(x) = \begin{cases} x^2 - 2 & \text{if } x < 0 \\ -3x - 2 & \text{if } x \geq 0 \end{cases} \][/tex]

we need to examine the behavior of the function across its different segments.

### 1. For [tex]\( x < 0 \)[/tex]: [tex]\( f(x) = x^2 - 2 \)[/tex]

In this segment, the function [tex]\( f(x) \)[/tex] is a parabola opening upward because the coefficient of [tex]\( x^2 \)[/tex] is positive. To understand the range for [tex]\( x < 0 \)[/tex]:

- Minimum value: As [tex]\( x \)[/tex] approaches 0 from the left (i.e., [tex]\( x \to 0^- \)[/tex]), [tex]\( x^2 - 2 \)[/tex] approaches [tex]\(-2\)[/tex]. Thus, the minimum value in this segment is [tex]\(-2\)[/tex].

- Maximum value: As [tex]\( x \)[/tex] decreases towards negative infinity (i.e., [tex]\( x \to -\infty \)[/tex]), [tex]\( x^2 - 2 \)[/tex] increases without bound because [tex]\( x^2 \)[/tex] becomes very large. Therefore, the maximum value in this segment is [tex]\( +\infty \)[/tex].

So, in the interval [tex]\( x < 0 \)[/tex], the range is [tex]\([-2, \infty)\)[/tex].

### 2. For [tex]\( x \geq 0 \)[/tex]: [tex]\( f(x) = -3x - 2 \)[/tex]

In this segment, the function [tex]\( f(x) \)[/tex] is a linear equation with a negative slope. To understand the range for [tex]\( x \geq 0 \)[/tex]:

- Maximum value: As [tex]\( x \)[/tex] approaches 0 from the right (i.e., [tex]\( x \to 0^+ \)[/tex]), [tex]\( -3x - 2 \)[/tex] approaches [tex]\(-2\)[/tex]. Thus, the maximum value in this segment is [tex]\(-2\)[/tex].

- Minimum value: As [tex]\( x \)[/tex] increases towards positive infinity (i.e., [tex]\( x \to +\infty \)[/tex]), [tex]\( -3x - 2 \)[/tex] decreases without bound. Therefore, the minimum value in this segment is [tex]\(-\infty\)[/tex].

So, in the interval [tex]\( x \geq 0 \)[/tex], the range is [tex]\((-\infty, -2]\)[/tex].

### Combining Both Segments

Given that there is no discontinuity at [tex]\( x = 0 \)[/tex] and the function smoothly transitions from [tex]\( x^2 - 2 \)[/tex] to [tex]\( -3x - 2 \)[/tex] at [tex]\( x = 0 \)[/tex], we can combine the ranges of the two segments.

- The minimum value of the entire function is [tex]\(-\infty\)[/tex] (from [tex]\( x \geq 0 \)[/tex] segment).
- The maximum value of the entire function is [tex]\( +\infty\)[/tex] (from [tex]\( x < 0 \)[/tex] segment).

Therefore, the range of the entire piecewise function is [tex]\( (-\infty, \infty) \)[/tex].