Select the correct answer.

Which expression simplifies to [tex]$2 \sqrt{15}$[/tex]?

A. [tex]$\sqrt{17}$[/tex]
B. [tex][tex]$\sqrt{19}$[/tex][/tex]
C. [tex]$\sqrt{30}$[/tex]
D. [tex]$\sqrt{60}$[/tex]



Answer :

To determine which of the given expressions simplifies to [tex]\(2 \sqrt{15}\)[/tex], we'll examine each option one by one.

### Option A: [tex]\(\sqrt{17}\)[/tex]
[tex]\[ \sqrt{17} \text{ does not directly simplify to } 2 \sqrt{15}. \][/tex]
There are no factors of 17 that can be manipulated to give [tex]\(2 \sqrt{15}\)[/tex].

### Option B: [tex]\(\sqrt{19}\)[/tex]
[tex]\[ \sqrt{19} \text{ does not directly simplify to } 2 \sqrt{15}. \][/tex]
Similar to Option A, there are no factors of 19 that can be manipulated to give [tex]\(2 \sqrt{15}\)[/tex].

### Option C: [tex]\(\sqrt{30}\)[/tex]
[tex]\[ \sqrt{30} \text{ does not simplify to } 2 \sqrt{15}. \][/tex]
30 can be factored as [tex]\(2 \times 15\)[/tex], but this still does not lead us to [tex]\(2 \sqrt{15}\)[/tex] because:
[tex]\[ \sqrt{30} = \sqrt{2 \times 15} \neq 2 \sqrt{15}. \][/tex]

### Option D: [tex]\(\sqrt{60}\)[/tex]
Now let's examine [tex]\(\sqrt{60}\)[/tex] in more detail.
[tex]\[ \sqrt{60} \text{ can be factored as } \sqrt{4 \times 15}. \][/tex]
Utilizing the property of square roots that [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex], we get:
[tex]\[ \sqrt{60} = \sqrt{4 \times 15} = \sqrt{4} \times \sqrt{15} = 2 \sqrt{15}. \][/tex]

So, [tex]\(\sqrt{60}\)[/tex] simplifies to [tex]\(2 \sqrt{15}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{4} ( \text{Option D: } \sqrt{60} ) \][/tex]