Answer :

Let's simplify the expression [tex]\(4(1 - 3x) + 7x - 8\)[/tex].

### Step 1: Distribute the 4
We start by distributing the 4 to both terms inside the parentheses:

[tex]\[ 4 \times 1 - 4 \times 3x \][/tex]

This simplifies to:

[tex]\[ 4 - 12x \][/tex]

Now our expression becomes:

[tex]\[ 4 - 12x + 7x - 8 \][/tex]

### Step 2: Combine like terms
Next, we combine the like terms. The like terms in our expression are:
- The constant terms: [tex]\(4\)[/tex] and [tex]\(-8\)[/tex]
- The terms involving [tex]\(x\)[/tex]: [tex]\(-12x\)[/tex] and [tex]\(7x\)[/tex]

Let's combine them step by step.

First, the constants:

[tex]\[ 4 - 8 = -4 \][/tex]

Next, the [tex]\(x\)[/tex] terms:

[tex]\[ -12x + 7x = -5x \][/tex]

### Final expression
Putting it all together, we get:

[tex]\[ -4 - 5x \][/tex]

So, the simplified expression is:

[tex]\[ \boxed{-4 - 5x} \][/tex]