Let's simplify the expression [tex]\(4(1 - 3x) + 7x - 8\)[/tex].
### Step 1: Distribute the 4
We start by distributing the 4 to both terms inside the parentheses:
[tex]\[
4 \times 1 - 4 \times 3x
\][/tex]
This simplifies to:
[tex]\[
4 - 12x
\][/tex]
Now our expression becomes:
[tex]\[
4 - 12x + 7x - 8
\][/tex]
### Step 2: Combine like terms
Next, we combine the like terms. The like terms in our expression are:
- The constant terms: [tex]\(4\)[/tex] and [tex]\(-8\)[/tex]
- The terms involving [tex]\(x\)[/tex]: [tex]\(-12x\)[/tex] and [tex]\(7x\)[/tex]
Let's combine them step by step.
First, the constants:
[tex]\[
4 - 8 = -4
\][/tex]
Next, the [tex]\(x\)[/tex] terms:
[tex]\[
-12x + 7x = -5x
\][/tex]
### Final expression
Putting it all together, we get:
[tex]\[
-4 - 5x
\][/tex]
So, the simplified expression is:
[tex]\[
\boxed{-4 - 5x}
\][/tex]