Simplify the expression:

[tex]\[ \left(\frac{-3 r^6 s^3}{r}\right)^2 \][/tex]

A. [tex]\( 9 r^5 s^5 \)[/tex]

B. [tex]\( 9 r^{10} s^6 \)[/tex]

C. [tex]\( -3 r^{10} s^6 \)[/tex]

D. [tex]\( -9 r^{10} s^6 \)[/tex]



Answer :

To simplify the given expression step-by-step, follow these steps:

1. Simplify inside the parenthesis first:
[tex]\[ \left(\frac{-3 r^6 s^3}{r}\right) \][/tex]
We can divide [tex]\(r^6\)[/tex] by [tex]\(r\)[/tex]:
[tex]\[ \frac{-3 r^6 s^3}{r} = -3 r^{6-1} s^3 = -3 r^5 s^3 \][/tex]

2. Now, take the simplified expression and square it:
[tex]\[ \left(-3 r^5 s^3\right)^2 \][/tex]
When squaring a product of terms, we square each term individually:
[tex]\[ \left(-3\right)^2 \left(r^5\right)^2 \left(s^3\right)^2 \][/tex]

3. Simplify each part separately:
[tex]\[ \left(-3\right)^2 = 9 \][/tex]
[tex]\[ \left(r^5\right)^2 = r^{5 \cdot 2} = r^{10} \][/tex]
[tex]\[ \left(s^3\right)^2 = s^{3 \cdot 2} = s^6 \][/tex]

4. Combine all the simplified parts together:
[tex]\[ 9 r^{10} s^6 \][/tex]

So, the simplified expression is:
[tex]\[ 9 r^{10} s^6 \][/tex]

Therefore, the correct answer is:
[tex]\[ 9 r^{10} s^6 \][/tex]