Point [tex]\( B \)[/tex] is on line segment [tex]\( \overline{AC} \)[/tex]. If [tex]\( AB = x + 6 \)[/tex], [tex]\( BC = x + 8 \)[/tex], and [tex]\( AC = 10 \)[/tex], then find the value of [tex]\( x \)[/tex].

A. [tex]\(-12\)[/tex]
B. [tex]\(4\)[/tex]
C. [tex]\(-5\)[/tex]
D. [tex]\(-2\)[/tex]



Answer :

To find the value of [tex]\( x \)[/tex] given the lengths of segments on line segment [tex]\(\overline{AC}\)[/tex], we proceed with the following steps:

1. Set up the relationship between the segments:
- [tex]\( AB = x + 6 \)[/tex]
- [tex]\( BC = x + 8 \)[/tex]
- The total length of [tex]\( AC \)[/tex] is given as 10.

2. Write the equation relating the segments:
Since [tex]\( B \)[/tex] is a point on line segment [tex]\(\overline{AC}\)[/tex], we know that:
[tex]\[ AB + BC = AC \][/tex]
Substituting the given values, we have:
[tex]\[ (x + 6) + (x + 8) = 10 \][/tex]

3. Simplify the equation:
Combine like terms:
[tex]\[ x + 6 + x + 8 = 10 \][/tex]
[tex]\[ 2x + 14 = 10 \][/tex]

4. Solve for [tex]\( x \)[/tex]:
Isolate [tex]\( x \)[/tex] by first subtracting 14 from both sides:
[tex]\[ 2x + 14 - 14 = 10 - 14 \][/tex]
[tex]\[ 2x = -4 \][/tex]
Then, divide both sides by 2:
[tex]\[ x = \frac{-4}{2} \][/tex]
[tex]\[ x = -2 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( -2 \)[/tex].