Simplify each expression using exponent rules.

\begin{tabular}{|c|c|}
\hline
\textbf{Expression} & \textbf{Simplified} \\
\hline
[tex]$x \cdot x$[/tex] & [tex]$x^2$[/tex] \\
\hline
[tex]$y \cdot y \cdot y \cdot y$[/tex] & [tex]$y^4$[/tex] \\
\hline
[tex]$x \cdot x \cdot y \cdot y \cdot y$[/tex] & [tex]$x^2 y^3$[/tex] \\
\hline
[tex]$y \cdot z \cdot z \cdot z \cdot z \cdot z$[/tex] & [tex]$y \cdot z^5$[/tex] \\
\hline
[tex]$x^2 \cdot x^3$[/tex] & [tex]$x^5$[/tex] \\
\hline
[tex]$x^5 \cdot x^4$[/tex] & [tex]$x^9$[/tex] \\
\hline
[tex]$y^6 \cdot y$[/tex] & [tex]$y^7$[/tex] \\
\hline
[tex]$\left(x^4\right)^3$[/tex] & [tex]$x^{12}$[/tex] \\
\hline
[tex]$\left(y^3\right)^2$[/tex] & [tex]$y^6$[/tex] \\
\hline
[tex]$x^2 \cdot x \cdot y^3 \cdot y^4$[/tex] & [tex]$x^3 y^7$[/tex] \\
\hline
[tex]$a^4 \cdot b^8 \cdot a^5 \cdot b^2$[/tex] & [tex]$a^9 b^{10}$[/tex] \\
\hline
[tex]$c^3 \cdot d \cdot c^4 \cdot b$[/tex] & [tex]$c^7 d b$[/tex] \\
\hline
[tex]$\frac{x^5}{x^2}$[/tex] & [tex]$x^3$[/tex] \\
\hline
[tex]$\frac{y^8}{y^3}$[/tex] & [tex]$y^5$[/tex] \\
\hline
\end{tabular}



Answer :

Let's go through each expression step-by-step and apply the appropriate exponent rules:

1. Expression: [tex]\( x \cdot x \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]
- Simplification: [tex]\( x^2 \)[/tex]

2. Expression: [tex]\( y \cdot y \cdot y \cdot y \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]
- Simplification: [tex]\( y^4 \)[/tex]

3. Expression: [tex]\( x \cdot x \cdot y \cdot y \cdot y \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex] and grouping terms with the same base.
- Simplification: [tex]\( x^2 y^3 \)[/tex]

4. Expression: [tex]\( y \cdot z \cdot z \cdot z \cdot z \cdot z \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex] and grouping terms with the same base.
- Simplification: [tex]\( y \cdot z^5 \)[/tex]

5. Expression: [tex]\( x^2 \cdot x^3 \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]
- Simplification: [tex]\( x^5 \)[/tex]

6. Expression: [tex]\( x^5 \cdot x^4 \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]
- Simplification: [tex]\( x^9 \)[/tex]

7. Expression: [tex]\( y^6 \cdot y \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]
- Simplification: [tex]\( y^7 \)[/tex]

8. Expression: [tex]\( (x^4)^3 \)[/tex]
- Rule Used: Power of a power: [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]
- Simplification: [tex]\( x^{12} \)[/tex]

9. Expression: [tex]\( (y^3)^2 \)[/tex]
- Rule Used: Power of a power: [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]
- Simplification: [tex]\( y^6 \)[/tex]

10. Expression: [tex]\( x^2 \cdot x \cdot y^3 \cdot y^4 \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex] and grouping terms with the same base.
- Simplification: [tex]\( x^3 y^7 \)[/tex]

11. Expression: [tex]\( a^4 \cdot b^8 \cdot a^5 \cdot b^2 \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex] and grouping terms with the same base.
- Simplification: [tex]\( a^9 b^{10} \)[/tex]

12. Expression: [tex]\( c^3 \cdot d \cdot c^4 \cdot b \)[/tex]
- Rule Used: Product of powers with the same base: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex] and grouping terms with the same base.
- Simplification: [tex]\( c^7 d b \)[/tex]

13. Expression: [tex]\( \frac{x^5}{x^2} \)[/tex]
- Rule Used: Quotient of powers with the same base: [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]
- Simplification: [tex]\( x^3 \)[/tex]

14. Expression: [tex]\( \frac{y^8}{y^3} \)[/tex]
- Rule Used: Quotient of powers with the same base: [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]
- Simplification: [tex]\( y^5 \)[/tex]

Finally, let's present these results in the tabular form.

[tex]\[\begin{array}{|c|c|} \hline \text{EXPRESSION} & \text{SIMPLIFIED} \\ \hline x \cdot x & x^2 \\ \hline y \cdot y \cdot y \cdot y & y^4 \\ \hline x \cdot x \cdot y \cdot y \cdot y & x^2 y^3 \\ \hline y \cdot z \cdot z \cdot z \cdot z \cdot z & y \cdot z^5 \\ \hline x^2 \cdot x^3 & x^5 \\ \hline x^5 \cdot x^4 & x^9 \\ \hline y^6 \cdot y & y^7 \\ \hline \left(x^4\right)^3 & x^{12} \\ \hline \left(y^3\right)^2 & y^6 \\ \hline x^2 \cdot x \cdot y^3 \cdot y^4 & x^3 y^7 \\ \hline a^4 \cdot b^8 \cdot a^5 \cdot b^2 & a^9 b^{10} \\ \hline c^3 \cdot d \cdot c^4 \cdot b & c^7 d b \\ \hline \frac{x^5}{x^2} & x^3 \\ \hline \frac{y^8}{y^3} & y^5 \\ \hline \end{array}\][/tex]