Answer :

To evaluate the expression [tex]\( 4 + 5x + \frac{1}{5} \cdot 1 \)[/tex], let's break it down step-by-step:

1. Identify each component of the expression:
- The first term is [tex]\(4\)[/tex].
- The second term is [tex]\(5x\)[/tex].
- The third term is [tex]\(\frac{1}{5} \cdot 1\)[/tex].

2. Substitute the given value of [tex]\(x\)[/tex]:
Let's assume [tex]\(x = 1\)[/tex].

3. Evaluate each part:
- The first term, [tex]\(4\)[/tex], is just [tex]\(4\)[/tex].
- For the second term, [tex]\(5x\)[/tex]:
[tex]\[ 5 \cdot 1 = 5 \][/tex]
- For the third term, [tex]\(\frac{1}{5} \cdot 1\)[/tex]:
[tex]\[ \frac{1}{5} \cdot 1 = 0.2 \][/tex]

4. Combine the results:
- Add these values together:
[tex]\[ 4 + 5 + 0.2 = 9.2 \][/tex]

Hence, the evaluation of the expression [tex]\( 4 + 5x + \frac{1}{5} \cdot 1 \)[/tex] results in [tex]\(9.2\)[/tex]. This step-by-step process ensures that we handle each term properly and combine them to get the final answer.