To evaluate the expression [tex]\( 4 + 5x + \frac{1}{5} \cdot 1 \)[/tex], let's break it down step-by-step:
1. Identify each component of the expression:
- The first term is [tex]\(4\)[/tex].
- The second term is [tex]\(5x\)[/tex].
- The third term is [tex]\(\frac{1}{5} \cdot 1\)[/tex].
2. Substitute the given value of [tex]\(x\)[/tex]:
Let's assume [tex]\(x = 1\)[/tex].
3. Evaluate each part:
- The first term, [tex]\(4\)[/tex], is just [tex]\(4\)[/tex].
- For the second term, [tex]\(5x\)[/tex]:
[tex]\[
5 \cdot 1 = 5
\][/tex]
- For the third term, [tex]\(\frac{1}{5} \cdot 1\)[/tex]:
[tex]\[
\frac{1}{5} \cdot 1 = 0.2
\][/tex]
4. Combine the results:
- Add these values together:
[tex]\[
4 + 5 + 0.2 = 9.2
\][/tex]
Hence, the evaluation of the expression [tex]\( 4 + 5x + \frac{1}{5} \cdot 1 \)[/tex] results in [tex]\(9.2\)[/tex]. This step-by-step process ensures that we handle each term properly and combine them to get the final answer.