Select the correct answer.

What is [tex] \sqrt{343} [/tex] in simplest form?

A. [tex] 7 \sqrt{7} [/tex]
B. [tex] 7 \sqrt{49} [/tex]
C. 7
D. [tex] 49 \sqrt{7} [/tex]

Submit



Answer :

To solve for [tex]\(\sqrt{343}\)[/tex] in its simplest form, let’s follow a systematic approach:

1. Prime Factorization of 343:
[tex]\(343\)[/tex] can be broken down with its prime factors. Upon examining it, we find:
[tex]\[ 343 = 7 \times 7 \times 7 = 7^3 \][/tex]

2. Taking the Square Root:
To find the square root of [tex]\(343\)[/tex], we use the property of square roots:
[tex]\[ \sqrt{343} = \sqrt{7^3} = \sqrt{7^2 \times 7} \][/tex]

3. Simplifying the Expression:
By properties of square roots, [tex]\(\sqrt{7^2 \times 7}\)[/tex] can be simplified as:
[tex]\[ \sqrt{7^2 \times 7} = 7 \sqrt{7} \][/tex]

So, the simplest form of [tex]\(\sqrt{343}\)[/tex] is:
[tex]\[ 7 \sqrt{7} \][/tex]

Thus, the correct answer is:
[tex]\(7 \sqrt{7}\)[/tex]