Answer :
To convert 55 kilometers per hour to meters per second, you need to apply the appropriate conversion factors step by step. Here is the complete process:
First, we start with the given speed:
[tex]\[ \frac{55 \text{ km}}{1 \text{ hour}} \][/tex]
Next, convert kilometers to meters (since 1 kilometer = 1,000 meters):
[tex]\[ \frac{55 \text{ km}}{1 \text{ hour}} \times \frac{1,000 \text{ meters}}{1 \text{ km}} \][/tex]
Then, convert hours to seconds (since 1 hour = 60 minutes and 1 minute = 60 seconds, so 1 hour = 3600 seconds):
[tex]\[ \frac{55 \text{ km}}{1 \text{ hour}} \times \frac{1,000 \text{ meters}}{1 \text{ km}} \times \frac{1 \text{ hour}}{3,600 \text{ seconds}} \][/tex]
Combining these conversions:
[tex]\[ \frac{55 \text{ km}}{1 \text{ hour}} \times \frac{1,000 \text{ meters}}{1 \text{ km}} \times \frac{1 \text{ hour}}{3,600 \text{ seconds}} \][/tex]
The units of hours cancel out, and we are then left with units of meters per second:
[tex]\[ \frac{55 \times 1,000}{3,600} \text{ meters per second} \][/tex]
Calculating this gives:
[tex]\[ \approx 15.28 \text{ meters per second} \][/tex]
So, the completed equation is:
[tex]\[ \frac{55 \text{ km}}{1 \text {hour}} \times \frac{1,000 \text{ meters}}{1 \text {km}} \times \frac{1 \text {hour}}{3,600 \text { seconds}} \approx 15.28 \text{ meters per second} \][/tex]
First, we start with the given speed:
[tex]\[ \frac{55 \text{ km}}{1 \text{ hour}} \][/tex]
Next, convert kilometers to meters (since 1 kilometer = 1,000 meters):
[tex]\[ \frac{55 \text{ km}}{1 \text{ hour}} \times \frac{1,000 \text{ meters}}{1 \text{ km}} \][/tex]
Then, convert hours to seconds (since 1 hour = 60 minutes and 1 minute = 60 seconds, so 1 hour = 3600 seconds):
[tex]\[ \frac{55 \text{ km}}{1 \text{ hour}} \times \frac{1,000 \text{ meters}}{1 \text{ km}} \times \frac{1 \text{ hour}}{3,600 \text{ seconds}} \][/tex]
Combining these conversions:
[tex]\[ \frac{55 \text{ km}}{1 \text{ hour}} \times \frac{1,000 \text{ meters}}{1 \text{ km}} \times \frac{1 \text{ hour}}{3,600 \text{ seconds}} \][/tex]
The units of hours cancel out, and we are then left with units of meters per second:
[tex]\[ \frac{55 \times 1,000}{3,600} \text{ meters per second} \][/tex]
Calculating this gives:
[tex]\[ \approx 15.28 \text{ meters per second} \][/tex]
So, the completed equation is:
[tex]\[ \frac{55 \text{ km}}{1 \text {hour}} \times \frac{1,000 \text{ meters}}{1 \text {km}} \times \frac{1 \text {hour}}{3,600 \text { seconds}} \approx 15.28 \text{ meters per second} \][/tex]