Calculate the total GDP for this economy given the following components of demand. Round your answer to the nearest tenth.

Components of GDP on the Demand Side (in trillions of dollars)
\begin{tabular}{|l|c|}
\hline Consumption & [tex]$10.6$[/tex] \\
\hline Investment & [tex]$2.4$[/tex] \\
\hline Government spending & [tex]$3.9$[/tex] \\
\hline Exports & [tex]$2.8$[/tex] \\
\hline Imports & [tex]$3.1$[/tex] \\
\hline \multicolumn{1}{|r|}{Total GDP} & [tex]$?$[/tex] \\
\hline
\end{tabular}

Provide your answer below:
[tex]$\square$[/tex] trillion



Answer :

To calculate the total GDP for this economy using the given components of demand, follow these steps:

1. Identify the components of GDP. These are:
- Consumption (C): [tex]\(10.6\)[/tex] trillion dollars
- Investment (I): [tex]\(2.4\)[/tex] trillion dollars
- Government spending (G): [tex]\(3.9\)[/tex] trillion dollars
- Exports (X): [tex]\(2.8\)[/tex] trillion dollars
- Imports (M): [tex]\(3.1\)[/tex] trillion dollars

2. Calculate the total GDP using the formula:
[tex]\[ \text{GDP} = C + I + G + (X - M) \][/tex]

3. Plug in the values from the table:
[tex]\[ \text{GDP} = 10.6 + 2.4 + 3.9 + (2.8 - 3.1) \][/tex]

4. Perform the arithmetic step-by-step:
- First, calculate the net exports ([tex]\(X - M\)[/tex]):
[tex]\[ 2.8 - 3.1 = -0.3 \][/tex]
- Next, sum the consumption, investment, government spending, and net exports:
[tex]\[ 10.6 + 2.4 + 3.9 - 0.3 = 16.6 \][/tex]

5. Round your final answer to the nearest tenth.
In this case, the number [tex]\(16.6\)[/tex] is already at its nearest tenth.

Therefore, the total GDP for this economy is:
[tex]\[ \boxed{16.6} \text{ trillion dollars} \][/tex]