Answer :

To solve [tex]\(6 \sqrt{-\frac{1}{9}}\)[/tex], let's go through the solution step-by-step:

1. Identify the expression inside the square root:
The given expression is [tex]\(6 \sqrt{-\frac{1}{9}}\)[/tex].

2. Understand the nature of the square root of a negative number:
The square root of a negative number involves imaginary numbers. Specifically, [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.

3. Separate the square root into real and imaginary parts:
Rewrite the expression inside the square root:
[tex]\[ \sqrt{-\frac{1}{9}} = \sqrt{-1 \cdot \frac{1}{9}} \][/tex]

4. Simplify the term inside the square root:
You can split this into two separate square roots:
[tex]\[ \sqrt{-1 \cdot \frac{1}{9}} = \sqrt{-1} \cdot \sqrt{\frac{1}{9}} \][/tex]

5. Calculate [tex]\(\sqrt{-1}\)[/tex] and [tex]\(\sqrt{\frac{1}{9}}\)[/tex]:
[tex]\[ \sqrt{-1} = i \][/tex]
[tex]\[ \sqrt{\frac{1}{9}} = \frac{1}{3} \][/tex]

6. Multiply the results:
[tex]\[ \sqrt{-\frac{1}{9}} = i \cdot \frac{1}{3} = \frac{i}{3} \][/tex]

7. Multiply this by 6:
[tex]\[ 6 \sqrt{-\frac{1}{9}} = 6 \cdot \frac{i}{3} \][/tex]

8. Simplify the multiplication:
[tex]\[ 6 \cdot \frac{i}{3} = 2i \][/tex]

Therefore, the value of [tex]\(6 \sqrt{-\frac{1}{9}}\)[/tex] is [tex]\(\boxed{2i}\)[/tex].