Stone Manufacturing has developed a cost model, [tex]$C(x)=0.18x^3+0.02x^2+4x+180$[/tex], where [tex]$x$[/tex] is the number of sprockets sold, in thousands. The sale price can be modeled by [tex]$S(x)=95.4-6x$[/tex] and the company's revenue by [tex][tex]$R(x)=x \cdot S(x)$[/tex][/tex].

The company's profits, [tex]$R(x) - C(x)$[/tex], could be modeled by:

(1) [tex]$0.18x^3+6.02x^2+91.4x+180$[/tex]
(2) [tex][tex]$0.18x^3-5.98x^2-91.4x+180$[/tex][/tex]
(3) [tex]$-0.18x^3-6.02x^2+91.4x-180$[/tex]
(4) [tex]$0.18x^3+5.98x^2+99.4x+180$[/tex]



Answer :

Let's analyze the given cost model [tex]\(C(x)\)[/tex], sales price model [tex]\(S(x)\)[/tex], revenue model [tex]\(R(x)\)[/tex], and profit, then derive the final expression:

1. Given Cost Model: [tex]\[ C(x) = 0.18 x^3 + 0.02 x^2 + 4 x + 180 \][/tex]

2. Given Sale Price Model: [tex]\[ S(x) = 95.4 - 6x \][/tex]

3. Given Revenue Model: [tex]\[ R(x) = x \cdot S(x) = x \cdot (95.4 - 6x) = 95.4x - 6x^2 \][/tex]

4. Profit Model: Profit is given by the difference between revenue and cost:
[tex]\[ P(x) = R(x) - C(x) \][/tex]

Substituting [tex]\(R(x)\)[/tex] and [tex]\(C(x)\)[/tex] into the profit formula:
[tex]\[ P(x) = (95.4x - 6x^2) - (0.18x^3 + 0.02x^2 + 4x + 180) \][/tex]

Now let's distribute and combine like terms:
[tex]\[ P(x) = 95.4x - 6x^2 - 0.18x^3 - 0.02x^2 - 4x - 180 \][/tex]

Combine the terms:
[tex]\[ P(x) = -0.18x^3 - 6x^2 - 0.02x^2 + 95.4x - 4x - 180 \][/tex]
[tex]\[ P(x) = -0.18x^3 - (6x^2 + 0.02x^2) + (95.4x - 4x) - 180 \][/tex]
[tex]\[ P(x) = -0.18x^3 - 6.02x^2 + 91.4x - 180 \][/tex]

Therefore, the profit function is:
[tex]\[ P(x) = -0.18x^3 - 6.02x^2 + 91.4x - 180 \][/tex]

Reviewing the options given in the question, we see that this matches option (3):

(1) [tex]\( 0.18 x^3 + 6.02 x^2 + 91.4 x + 180 \)[/tex]

(2) [tex]\( 0.18 x^3 - 5.98 x^2 - 91.4 x + 180 \)[/tex]

(3) [tex]\( -0.18 x^3 - 6.02 x^2 + 91.4 x - 180 \)[/tex] [tex]\(\rightarrow\)[/tex] This matches our result

(4) [tex]\( 0.18 x^3 + 5.98 x^2 + 99.4 x + 180 \)[/tex]

Thus, the correct answer is:
[tex]\[ \boxed{3} \][/tex]