Suppose that the function [tex] g [/tex] is defined as follows:

[tex]\[ g(x)=\begin{cases}
-2 & \text{if } -2.5 \ \textless \ x \leq -1.5 \\
-1 & \text{if } -1.5 \ \textless \ x \leq -0.5 \\
0 & \text{if } -0.5 \ \textless \ x \ \textless \ 0.5 \\
1 & \text{if } 0.5 \leq x \ \textless \ 1.5
\end{cases} \][/tex]

Find [tex] g(-1.5) [/tex], [tex] g(-1.3) [/tex], and [tex] g(0.5) [/tex].



Answer :

To determine the values of [tex]\(g(-1.5)\)[/tex], [tex]\(g(-1.3)\)[/tex], and [tex]\(g(0.5)\)[/tex], we will use the definition of the function [tex]\(g(x)\)[/tex]. Let’s examine each case step-by-step.

1. Evaluating [tex]\(g(-1.5)\)[/tex]:
- According to the definition, for [tex]\(-2.5 < x \leq -1.5\)[/tex],
[tex]\[ g(x) = -2. \][/tex]
- Since [tex]\(-1.5 \leq -1.5\)[/tex] holds true, it follows directly that
[tex]\[ g(-1.5) = -2. \][/tex]

2. Evaluating [tex]\(g(-1.3)\)[/tex]:
- According to the definition, for [tex]\(-1.5 < x \leq -0.5\)[/tex],
[tex]\[ g(x) = -1. \][/tex]
- Since [tex]\(-1.5 < -1.3 < -0.5\)[/tex] is true, it follows that
[tex]\[ g(-1.3) = -1. \][/tex]

3. Evaluating [tex]\(g(0.5)\)[/tex]:
- According to the definition, for [tex]\(0.5 \leq x < 1.5\)[/tex],
[tex]\[ g(x) = 1. \][/tex]
- Since [tex]\(0.5 \leq 0.5 < 1.5\)[/tex] holds true, it follows that
[tex]\[ g(0.5) = 1. \][/tex]

Combining all the results, we have:
[tex]\[ g(-1.5) = -2, \][/tex]
[tex]\[ g(-1.3) = -1, \][/tex]
[tex]\[ g(0.5) = 1. \][/tex]

Therefore, the values of [tex]\(g(-1.5)\)[/tex], [tex]\(g(-1.3)\)[/tex], and [tex]\(g(0.5)\)[/tex] are [tex]\((-2, -1, 1)\)[/tex].