b) [tex]\frac{\left(9.875 \times 10^4\right) - \left(9.795 \times 10^4\right)}{9.875 \times 10^4} \times 100 \% =[/tex] (assume 100 is exact)



Answer :

Let's break down the given expression step-by-step to find the answer:

The expression to evaluate is:

[tex]\[ \frac{\left(9.875 \times 10^4 \right) - \left(9.795 \times 10^4 \right)}{9.875 \times 10^4} \times 100 \% \][/tex]

First, we need to calculate the numerator:

[tex]\[ (9.875 \times 10^4) - (9.795 \times 10^4) \][/tex]

This simplifies to:

[tex]\[ 98750 - 97950 = 800 \][/tex]

So, the numerator is [tex]\(800\)[/tex].

Next, let's consider the denominator:

[tex]\[ 9.875 \times 10^4 = 98750 \][/tex]

So, the denominator is [tex]\(98750\)[/tex].

Now, we can put these values into the fraction:

[tex]\[ \frac{800}{98750} \][/tex]

Dividing 800 by 98750 gives us:

[tex]\[ \frac{800}{98750} = 0.00810126582278481 \][/tex]

Now we need to convert this ratio into a percentage by multiplying by 100:

[tex]\[ 0.00810126582278481 \times 100 = 0.8101265822784811 \% \][/tex]

Thus, the final step-by-step solution to the given problem is:

[tex]\[ \frac{\left(9.875 \times 10^4\right)-\left(9.795 \times 10^4\right)}{9.875 \times 10^4} \times 100 \% = 0.8101265822784811 \% \][/tex]