Let's break down the given expression step-by-step to find the answer:
The expression to evaluate is:
[tex]\[
\frac{\left(9.875 \times 10^4 \right) - \left(9.795 \times 10^4 \right)}{9.875 \times 10^4} \times 100 \%
\][/tex]
First, we need to calculate the numerator:
[tex]\[
(9.875 \times 10^4) - (9.795 \times 10^4)
\][/tex]
This simplifies to:
[tex]\[
98750 - 97950 = 800
\][/tex]
So, the numerator is [tex]\(800\)[/tex].
Next, let's consider the denominator:
[tex]\[
9.875 \times 10^4 = 98750
\][/tex]
So, the denominator is [tex]\(98750\)[/tex].
Now, we can put these values into the fraction:
[tex]\[
\frac{800}{98750}
\][/tex]
Dividing 800 by 98750 gives us:
[tex]\[
\frac{800}{98750} = 0.00810126582278481
\][/tex]
Now we need to convert this ratio into a percentage by multiplying by 100:
[tex]\[
0.00810126582278481 \times 100 = 0.8101265822784811 \%
\][/tex]
Thus, the final step-by-step solution to the given problem is:
[tex]\[
\frac{\left(9.875 \times 10^4\right)-\left(9.795 \times 10^4\right)}{9.875 \times 10^4} \times 100 \% = 0.8101265822784811 \%
\][/tex]