To find the midpoint of the two points [tex]\((-4,-7)\)[/tex] and [tex]\( (11,-2)\)[/tex], we follow these steps:
1. Understand the Midpoint Formula:
The formula to find the midpoint [tex]\((x, y)\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)
\][/tex]
2. Identify the Coordinates:
[tex]\[
(x_1, y_1) = (-4, -7)
\][/tex]
[tex]\[
(x_2, y_2) = (11, -2)
\][/tex]
3. Calculate the x-coordinate of the Midpoint:
[tex]\[
x = \frac{x_1 + x_2}{2} = \frac{-4 + 11}{2} = \frac{7}{2} = 3.5
\][/tex]
4. Calculate the y-coordinate of the Midpoint:
[tex]\[
y = \frac{y_1 + y_2}{2} = \frac{-7 + (-2)}{2} = \frac{-9}{2} = -4.5
\][/tex]
So, the x-coordinate of the midpoint, rounded to the nearest tenth, is:
[tex]\[
x = 3.5
\][/tex]
And the y-coordinate of the midpoint, rounded to the nearest tenth, is:
[tex]\[
y = -4.5
\][/tex]