Answer :
Let's evaluate the expression [tex]\( x + z - z + 1 \)[/tex] given the values [tex]\( x = 2 \)[/tex] and [tex]\( z = 6 \)[/tex].
1. Start with the given values: [tex]\( x = 2 \)[/tex] and [tex]\( z = 6 \)[/tex].
2. Substitute [tex]\( x \)[/tex] and [tex]\( z \)[/tex] into the expression [tex]\( x + z - z + 1 \)[/tex]:
[tex]\[ 2 + 6 - 6 + 1 \][/tex]
3. Simplify the expression step-by-step:
[tex]\[ 2 + 6 = 8 \][/tex]
Now, substitute back:
[tex]\[ 8 - 6 + 1 \][/tex]
4. Continue simplifying:
[tex]\[ 8 - 6 = 2 \][/tex]
Now, substitute back:
[tex]\[ 2 + 1 \][/tex]
5. Finally, add 1 to the result:
[tex]\[ 2 + 1 = 3 \][/tex]
So, the evaluated expression [tex]\( x + z - z + 1 \)[/tex] when [tex]\( x = 2 \)[/tex] and [tex]\( z = 6 \)[/tex] equals 3.
The other parts of the question can be evaluated as follows:
a) [tex]\( x + z \)[/tex]:
[tex]\[ 2 + 6 = 8 \][/tex]
b) [tex]\( x + z - z \)[/tex]:
[tex]\[ 2 + 6 - 6 = 2 \][/tex]
c) [tex]\( x + z - z + 1 \)[/tex]:
[tex]\[ 2 + 6 - 6 + 1 = 3 \][/tex]
Thus:
- [tex]\( x + z = 8 \)[/tex]
- [tex]\( x + z - z = 2 \)[/tex]
- [tex]\( x + z - z + 1 = 3 \)[/tex]
These calculations confirm the results:
[tex]\((3, 8, 2, 3)\)[/tex].
1. Start with the given values: [tex]\( x = 2 \)[/tex] and [tex]\( z = 6 \)[/tex].
2. Substitute [tex]\( x \)[/tex] and [tex]\( z \)[/tex] into the expression [tex]\( x + z - z + 1 \)[/tex]:
[tex]\[ 2 + 6 - 6 + 1 \][/tex]
3. Simplify the expression step-by-step:
[tex]\[ 2 + 6 = 8 \][/tex]
Now, substitute back:
[tex]\[ 8 - 6 + 1 \][/tex]
4. Continue simplifying:
[tex]\[ 8 - 6 = 2 \][/tex]
Now, substitute back:
[tex]\[ 2 + 1 \][/tex]
5. Finally, add 1 to the result:
[tex]\[ 2 + 1 = 3 \][/tex]
So, the evaluated expression [tex]\( x + z - z + 1 \)[/tex] when [tex]\( x = 2 \)[/tex] and [tex]\( z = 6 \)[/tex] equals 3.
The other parts of the question can be evaluated as follows:
a) [tex]\( x + z \)[/tex]:
[tex]\[ 2 + 6 = 8 \][/tex]
b) [tex]\( x + z - z \)[/tex]:
[tex]\[ 2 + 6 - 6 = 2 \][/tex]
c) [tex]\( x + z - z + 1 \)[/tex]:
[tex]\[ 2 + 6 - 6 + 1 = 3 \][/tex]
Thus:
- [tex]\( x + z = 8 \)[/tex]
- [tex]\( x + z - z = 2 \)[/tex]
- [tex]\( x + z - z + 1 = 3 \)[/tex]
These calculations confirm the results:
[tex]\((3, 8, 2, 3)\)[/tex].