Answer :

To find the solution to the system of linear equations:

[tex]\[ \left\{ \begin{array}{l} x + 8y = -16 \\ x - 3y = -5 \end{array} \right. \][/tex]

We will solve this system step-by-step.

1. Label the equations:

[tex]\[ \begin{aligned} &\text{Equation (1):} \quad x + 8y = -16 \\ &\text{Equation (2):} \quad x - 3y = -5 \end{aligned} \][/tex]

2. Eliminate one of the variables:

To eliminate [tex]\(x\)[/tex], we can subtract Equation (2) from Equation (1).

[tex]\[ \begin{aligned} &(x + 8y) - (x - 3y) = -16 - (-5) \\ &x + 8y - x + 3y = -16 + 5 \\ &11y = -11 \end{aligned} \][/tex]

3. Solve for [tex]\(y\)[/tex]:

[tex]\[ \begin{aligned} &11y = -11 \\ &y = \frac{-11}{11} \\ &y = -1 \end{aligned} \][/tex]

4. Substitute [tex]\(y\)[/tex] back into one of the original equations to find [tex]\(x\)[/tex]:

Using Equation (2):

[tex]\[ \begin{aligned} &x - 3(-1) = -5 \\ &x + 3 = -5 \\ &x = -5 - 3 \\ &x = -8 \end{aligned} \][/tex]

5. Write the solution as an ordered pair:

[tex]\[ \boxed{(x, y) = (-8, -1)} \][/tex]

The solution to the system of equations is [tex]\(x = -8\)[/tex] and [tex]\(y = -1\)[/tex].