Answer :
Sure, let's find the vectors [tex]\(\vec{u}\)[/tex] and [tex]\(\vec{v}\)[/tex] given the vector equations:
1. [tex]\(\vec{u} + 2\vec{v} = 3\vec{i} - \vec{k}\)[/tex]
2. [tex]\(3\vec{u} - \vec{v} = \vec{i} + \vec{j} + \vec{k}\)[/tex]
First, let's express [tex]\(\vec{u}\)[/tex] and [tex]\(\vec{v}\)[/tex] in terms of their components:
[tex]\[ \vec{u} = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k} \][/tex]
[tex]\[ \vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k} \][/tex]
Next, we will break down the vector equations into scalar components by comparing coefficients on both sides for each of the unit vectors [tex]\(\vec{i}\)[/tex], [tex]\(\vec{j}\)[/tex], and [tex]\(\vec{k}\)[/tex].
### Equation 1:
[tex]\[ \vec{u} + 2\vec{v} = 3\vec{i} - \vec{k} \][/tex]
Comparing [tex]\(\vec{i}\)[/tex], [tex]\(\vec{j}\)[/tex], and [tex]\(\vec{k}\)[/tex] components:
[tex]\[ u_1 + 2v_1 = 3 \quad (1a) \][/tex]
[tex]\[ u_2 + 2v_2 = 0 \quad (1b) \][/tex]
[tex]\[ u_3 + 2v_3 = -1 \quad (1c) \][/tex]
### Equation 2:
[tex]\[ 3\vec{u} - \vec{v} = \vec{i} + \vec{j} + \vec{k} \][/tex]
Comparing [tex]\(\vec{i}\)[/tex], [tex]\(\vec{j}\)[/tex], and [tex]\(\vec{k}\)[/tex] components:
[tex]\[ 3u_1 - v_1 = 1 \quad (2a) \][/tex]
[tex]\[ 3u_2 - v_2 = 1 \quad (2b) \][/tex]
[tex]\[ 3u_3 - v_3 = 1 \quad (2c) \][/tex]
We now have a system of linear equations:
For [tex]\(u_1\)[/tex] and [tex]\(v_1\)[/tex]:
[tex]\[ \begin{cases} u_1 + 2v_1 = 3 \\ 3u_1 - v_1 = 1 \end{cases} \][/tex]
For [tex]\(u_2\)[/tex] and [tex]\(v_2\)[/tex]:
[tex]\[ \begin{cases} u_2 + 2v_2 = 0 \\ 3u_2 - v_2 = 1 \end{cases} \][/tex]
For [tex]\(u_3\)[/tex] and [tex]\(v_3\)[/tex]:
[tex]\[ \begin{cases} u_3 + 2v_3 = -1 \\ 3u_3 - v_3 = 1 \end{cases} \][/tex]
#### Solving these linear systems:
1. For [tex]\(u_1\)[/tex] and [tex]\(v_1\)[/tex]:
[tex]\[ \begin{cases} u_1 + 2v_1 = 3 \\ 3u_1 - v_1 = 1 \end{cases} \][/tex]
Solving the above system, we get:
[tex]\( u_1 = 0.85714286 \)[/tex]
[tex]\( v_1 = 0.71428571 \)[/tex]
2. For [tex]\(u_2\)[/tex] and [tex]\(v_2\)[/tex]:
[tex]\[ \begin{cases} u_2 + 2v_2 = 0 \\ 3u_2 - v_2 = 1 \end{cases} \][/tex]
Solving the above system, we get:
[tex]\( u_2 = 0.42857143 \)[/tex]
[tex]\( v_2 = -0.14285714 \)[/tex]
3. For [tex]\(u_3\)[/tex] and [tex]\(v_3\)[/tex]:
[tex]\[ \begin{cases} u_3 + 2v_3 = -1 \\ 3u_3 - v_3 = 1 \end{cases} \][/tex]
Solving the above system, we get:
[tex]\( u_3 = 0.28571429 \)[/tex]
[tex]\( v_3 = -0.42857143 \)[/tex]
Thus, the vectors [tex]\(\vec{u}\)[/tex] and [tex]\(\vec{v}\)[/tex] are:
[tex]\[ \vec{u} = \left[0.85714286, 0.42857143, 0.28571429\right] \][/tex]
[tex]\[ \vec{v} = \left[0.71428571, -0.14285714, -0.42857143\right] \][/tex]
1. [tex]\(\vec{u} + 2\vec{v} = 3\vec{i} - \vec{k}\)[/tex]
2. [tex]\(3\vec{u} - \vec{v} = \vec{i} + \vec{j} + \vec{k}\)[/tex]
First, let's express [tex]\(\vec{u}\)[/tex] and [tex]\(\vec{v}\)[/tex] in terms of their components:
[tex]\[ \vec{u} = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k} \][/tex]
[tex]\[ \vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k} \][/tex]
Next, we will break down the vector equations into scalar components by comparing coefficients on both sides for each of the unit vectors [tex]\(\vec{i}\)[/tex], [tex]\(\vec{j}\)[/tex], and [tex]\(\vec{k}\)[/tex].
### Equation 1:
[tex]\[ \vec{u} + 2\vec{v} = 3\vec{i} - \vec{k} \][/tex]
Comparing [tex]\(\vec{i}\)[/tex], [tex]\(\vec{j}\)[/tex], and [tex]\(\vec{k}\)[/tex] components:
[tex]\[ u_1 + 2v_1 = 3 \quad (1a) \][/tex]
[tex]\[ u_2 + 2v_2 = 0 \quad (1b) \][/tex]
[tex]\[ u_3 + 2v_3 = -1 \quad (1c) \][/tex]
### Equation 2:
[tex]\[ 3\vec{u} - \vec{v} = \vec{i} + \vec{j} + \vec{k} \][/tex]
Comparing [tex]\(\vec{i}\)[/tex], [tex]\(\vec{j}\)[/tex], and [tex]\(\vec{k}\)[/tex] components:
[tex]\[ 3u_1 - v_1 = 1 \quad (2a) \][/tex]
[tex]\[ 3u_2 - v_2 = 1 \quad (2b) \][/tex]
[tex]\[ 3u_3 - v_3 = 1 \quad (2c) \][/tex]
We now have a system of linear equations:
For [tex]\(u_1\)[/tex] and [tex]\(v_1\)[/tex]:
[tex]\[ \begin{cases} u_1 + 2v_1 = 3 \\ 3u_1 - v_1 = 1 \end{cases} \][/tex]
For [tex]\(u_2\)[/tex] and [tex]\(v_2\)[/tex]:
[tex]\[ \begin{cases} u_2 + 2v_2 = 0 \\ 3u_2 - v_2 = 1 \end{cases} \][/tex]
For [tex]\(u_3\)[/tex] and [tex]\(v_3\)[/tex]:
[tex]\[ \begin{cases} u_3 + 2v_3 = -1 \\ 3u_3 - v_3 = 1 \end{cases} \][/tex]
#### Solving these linear systems:
1. For [tex]\(u_1\)[/tex] and [tex]\(v_1\)[/tex]:
[tex]\[ \begin{cases} u_1 + 2v_1 = 3 \\ 3u_1 - v_1 = 1 \end{cases} \][/tex]
Solving the above system, we get:
[tex]\( u_1 = 0.85714286 \)[/tex]
[tex]\( v_1 = 0.71428571 \)[/tex]
2. For [tex]\(u_2\)[/tex] and [tex]\(v_2\)[/tex]:
[tex]\[ \begin{cases} u_2 + 2v_2 = 0 \\ 3u_2 - v_2 = 1 \end{cases} \][/tex]
Solving the above system, we get:
[tex]\( u_2 = 0.42857143 \)[/tex]
[tex]\( v_2 = -0.14285714 \)[/tex]
3. For [tex]\(u_3\)[/tex] and [tex]\(v_3\)[/tex]:
[tex]\[ \begin{cases} u_3 + 2v_3 = -1 \\ 3u_3 - v_3 = 1 \end{cases} \][/tex]
Solving the above system, we get:
[tex]\( u_3 = 0.28571429 \)[/tex]
[tex]\( v_3 = -0.42857143 \)[/tex]
Thus, the vectors [tex]\(\vec{u}\)[/tex] and [tex]\(\vec{v}\)[/tex] are:
[tex]\[ \vec{u} = \left[0.85714286, 0.42857143, 0.28571429\right] \][/tex]
[tex]\[ \vec{v} = \left[0.71428571, -0.14285714, -0.42857143\right] \][/tex]