Answer :
Sure, let's go through these problems step by step.
### Problem 1: [tex]\(14 \times 2 + 27\)[/tex]
1. First, perform the multiplication: [tex]\(14 \times 2 = 28\)[/tex].
2. Then, add the result to 27: [tex]\(28 + 27 = 55\)[/tex].
So, [tex]\(14 \times 2 + 27 = 55\)[/tex].
### Problem 2: [tex]\(2.2 \times 2\)[/tex]
1. Multiply the two numbers: [tex]\(2.2 \times 2 = 4.4\)[/tex].
So, [tex]\(2.2 \times 2 = 4.4\)[/tex].
### Problem 3
This problem is not specified correctly. If you could provide more detail, I'd be happy to help.
### Problem 4: [tex]\(\frac{4}{5} \times \frac{4}{10}\)[/tex]
1. Multiply the numerators: [tex]\(4 \times 4 = 16\)[/tex].
2. Multiply the denominators: [tex]\(5 \times 10 = 50\)[/tex].
3. Simplify the fraction: [tex]\(\frac{16}{50}\)[/tex].
- The greatest common divisor of 16 and 50 is 2.
- So, [tex]\(\frac{16}{50} = \frac{16 \div 2}{50 \div 2} = \frac{8}{25}\)[/tex].
So, [tex]\(\frac{4}{5} \times \frac{4}{10} = \frac{8}{25}\)[/tex].
### Problem 5: [tex]\(\frac{52}{6} \times \frac{2}{2}\)[/tex]
1. The fraction [tex]\(\frac{2}{2}\)[/tex] is equivalent to 1, so multiplying anything by it does not change its value.
2. Therefore, [tex]\(\frac{52}{6} \times \frac{2}{2} = \frac{52}{6}\)[/tex].
3. To simplify [tex]\(\frac{52}{6}\)[/tex]:
- Divide both the numerator and the denominator by their greatest common divisor, which is 2.
- [tex]\(\frac{52 \div 2}{6 \div 2} = \frac{26}{3}\)[/tex].
So, [tex]\(\frac{52}{6} \times \frac{2}{2} = \frac{26}{3}\)[/tex].
### Summary:
1. [tex]\(14 \times 2 + 27 = 55\)[/tex]
2. [tex]\(2.2 \times 2 = 4.4\)[/tex]
4. [tex]\(\frac{4}{5} \times \frac{4}{10} = \frac{8}{25}\)[/tex]
5. [tex]\(\frac{52}{6} \times \frac{2}{2} = \frac{26}{3}\)[/tex]
Please provide more clarity on Problem 3 if you need assistance with it.
### Problem 1: [tex]\(14 \times 2 + 27\)[/tex]
1. First, perform the multiplication: [tex]\(14 \times 2 = 28\)[/tex].
2. Then, add the result to 27: [tex]\(28 + 27 = 55\)[/tex].
So, [tex]\(14 \times 2 + 27 = 55\)[/tex].
### Problem 2: [tex]\(2.2 \times 2\)[/tex]
1. Multiply the two numbers: [tex]\(2.2 \times 2 = 4.4\)[/tex].
So, [tex]\(2.2 \times 2 = 4.4\)[/tex].
### Problem 3
This problem is not specified correctly. If you could provide more detail, I'd be happy to help.
### Problem 4: [tex]\(\frac{4}{5} \times \frac{4}{10}\)[/tex]
1. Multiply the numerators: [tex]\(4 \times 4 = 16\)[/tex].
2. Multiply the denominators: [tex]\(5 \times 10 = 50\)[/tex].
3. Simplify the fraction: [tex]\(\frac{16}{50}\)[/tex].
- The greatest common divisor of 16 and 50 is 2.
- So, [tex]\(\frac{16}{50} = \frac{16 \div 2}{50 \div 2} = \frac{8}{25}\)[/tex].
So, [tex]\(\frac{4}{5} \times \frac{4}{10} = \frac{8}{25}\)[/tex].
### Problem 5: [tex]\(\frac{52}{6} \times \frac{2}{2}\)[/tex]
1. The fraction [tex]\(\frac{2}{2}\)[/tex] is equivalent to 1, so multiplying anything by it does not change its value.
2. Therefore, [tex]\(\frac{52}{6} \times \frac{2}{2} = \frac{52}{6}\)[/tex].
3. To simplify [tex]\(\frac{52}{6}\)[/tex]:
- Divide both the numerator and the denominator by their greatest common divisor, which is 2.
- [tex]\(\frac{52 \div 2}{6 \div 2} = \frac{26}{3}\)[/tex].
So, [tex]\(\frac{52}{6} \times \frac{2}{2} = \frac{26}{3}\)[/tex].
### Summary:
1. [tex]\(14 \times 2 + 27 = 55\)[/tex]
2. [tex]\(2.2 \times 2 = 4.4\)[/tex]
4. [tex]\(\frac{4}{5} \times \frac{4}{10} = \frac{8}{25}\)[/tex]
5. [tex]\(\frac{52}{6} \times \frac{2}{2} = \frac{26}{3}\)[/tex]
Please provide more clarity on Problem 3 if you need assistance with it.