Select the best answer for the question.

Express the fractions [tex]$ \frac{3}{4}, \frac{7}{16}, \text{and} \frac{5}{8} $[/tex] with the LCD.

A. [tex] \frac{12}{16}, \frac{7}{16}, \frac{10}{16} [/tex]

B. [tex] \frac{24}{32}, \frac{14}{32}, \frac{24}{32} [/tex]

C. [tex] \frac{3}{4}, \frac{2}{4}, \frac{3}{4} [/tex]

D. [tex] \frac{9}{16}, \frac{49}{16}, \frac{36}{16} [/tex]



Answer :

To express the fractions [tex]\(\frac{3}{4}\)[/tex], [tex]\(\frac{7}{16}\)[/tex], and [tex]\(\frac{5}{8}\)[/tex] using their Least Common Denominator (LCD), follow these steps:

1. Identify the LCD:
The denominators are 4, 16, and 8. The LCD of these three numbers is 16.

2. Convert each fraction to an equivalent fraction with the denominator of 16:

- For [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{3}{4} = \frac{3 \times 4}{4 \times 4} = \frac{12}{16} \][/tex]

- For [tex]\(\frac{7}{16}\)[/tex]:
[tex]\[ \frac{7}{16}\) already has the denominator 16, so it remains \(\frac{7}{16} \][/tex]

- For [tex]\(\frac{5}{8}\)[/tex]:
[tex]\[ \frac{5}{8} = \frac{5 \times 2}{8 \times 2} = \frac{10}{16} \][/tex]

3. Write the converted fractions together:
The fractions [tex]\(\frac{3}{4}\)[/tex], [tex]\(\frac{7}{16}\)[/tex], and [tex]\(\frac{5}{8}\)[/tex] can be expressed as [tex]\(\frac{12}{16}\)[/tex], [tex]\(\frac{7}{16}\)[/tex], and [tex]\(\frac{10}{16}\)[/tex] respectively.

Therefore, the correct answer is:
A. [tex]\( \frac{12}{16}, \frac{7}{16}, \frac{10}{16} \)[/tex]