Answer :
To express the fractions [tex]\(\frac{3}{4}\)[/tex], [tex]\(\frac{7}{16}\)[/tex], and [tex]\(\frac{5}{8}\)[/tex] using their Least Common Denominator (LCD), follow these steps:
1. Identify the LCD:
The denominators are 4, 16, and 8. The LCD of these three numbers is 16.
2. Convert each fraction to an equivalent fraction with the denominator of 16:
- For [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{3}{4} = \frac{3 \times 4}{4 \times 4} = \frac{12}{16} \][/tex]
- For [tex]\(\frac{7}{16}\)[/tex]:
[tex]\[ \frac{7}{16}\) already has the denominator 16, so it remains \(\frac{7}{16} \][/tex]
- For [tex]\(\frac{5}{8}\)[/tex]:
[tex]\[ \frac{5}{8} = \frac{5 \times 2}{8 \times 2} = \frac{10}{16} \][/tex]
3. Write the converted fractions together:
The fractions [tex]\(\frac{3}{4}\)[/tex], [tex]\(\frac{7}{16}\)[/tex], and [tex]\(\frac{5}{8}\)[/tex] can be expressed as [tex]\(\frac{12}{16}\)[/tex], [tex]\(\frac{7}{16}\)[/tex], and [tex]\(\frac{10}{16}\)[/tex] respectively.
Therefore, the correct answer is:
A. [tex]\( \frac{12}{16}, \frac{7}{16}, \frac{10}{16} \)[/tex]
1. Identify the LCD:
The denominators are 4, 16, and 8. The LCD of these three numbers is 16.
2. Convert each fraction to an equivalent fraction with the denominator of 16:
- For [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{3}{4} = \frac{3 \times 4}{4 \times 4} = \frac{12}{16} \][/tex]
- For [tex]\(\frac{7}{16}\)[/tex]:
[tex]\[ \frac{7}{16}\) already has the denominator 16, so it remains \(\frac{7}{16} \][/tex]
- For [tex]\(\frac{5}{8}\)[/tex]:
[tex]\[ \frac{5}{8} = \frac{5 \times 2}{8 \times 2} = \frac{10}{16} \][/tex]
3. Write the converted fractions together:
The fractions [tex]\(\frac{3}{4}\)[/tex], [tex]\(\frac{7}{16}\)[/tex], and [tex]\(\frac{5}{8}\)[/tex] can be expressed as [tex]\(\frac{12}{16}\)[/tex], [tex]\(\frac{7}{16}\)[/tex], and [tex]\(\frac{10}{16}\)[/tex] respectively.
Therefore, the correct answer is:
A. [tex]\( \frac{12}{16}, \frac{7}{16}, \frac{10}{16} \)[/tex]