Jules wrote the expression below, but the first term got erased. If the expression simplifies to [tex]-46x + 18[/tex], find the missing term.

[tex] \_\_ - 4(12x - 5) + 2x [/tex]



Answer :

Sure, let's work through this problem step-by-step to find the missing term in the given expression. The expression provided is:

[tex]\[ --4(12x - 5) + 2x \][/tex]

We need to simplify this expression and find the missing term such that when simplified, the expression becomes [tex]\(-46x + 18\)[/tex].

1. Handle the double negative sign:

The double negative in front of 4 can be simplified. Recall that a negative times a negative is a positive:

[tex]\[ --4(12x - 5) \quad \text{becomes} \quad 4(12x - 5) \][/tex]

2. Distribute the 4 inside the parentheses:

[tex]\[ 4(12x - 5) \][/tex]

Distribute the 4:

[tex]\[ 4 \cdot 12x - 4 \cdot 5 = 48x - 20 \][/tex]

3. Combine the result with the remaining term [tex]\(+2x\)[/tex]:

Now we add the [tex]\(2x\)[/tex] term to our expression:

[tex]\[ 48x - 20 + 2x \][/tex]

Combine like terms:

[tex]\[ 48x + 2x - 20 = 50x - 20 \][/tex]

So, the simplified form of the given expression [tex]\( --4(12x - 5) + 2x \)[/tex] is:

[tex]\[ 50x - 20 \][/tex]

4. Determine the missing term:

We are given that the entire expression simplifies to:

[tex]\[ -46x + 18 \][/tex]

We need this to match our simplified expression [tex]\(50x - 20\)[/tex]. Therefore, we calculate the missing term by determining what, when added to [tex]\(50x - 20\)[/tex], gives us [tex]\(-46x + 18\)[/tex]:

Missing term = [tex]\((-46x + 18) - (50x - 20)\)[/tex]

5. Calculate the missing term:

[tex]\[ (-46x + 18) - (50x - 20) \][/tex]
[tex]\[ = -46x + 18 - 50x + 20 \][/tex]
[tex]\[ = -46x - 50x + 18 + 20 \][/tex]
[tex]\[ = -96x + 38 \][/tex]

So, the missing term is:

[tex]\[ 38 - 96x \][/tex]

This means that the complete original expression must have been:

[tex]\[ (38 - 96x) - 4(12x - 5) + 2x \][/tex]

When simplified, it matches the given simplified form [tex]\(-46x + 18\)[/tex].