Multiply the following polynomials, then place the answer in the proper location on the grid. Write the answer in descending powers of [tex]\( a \)[/tex].

[tex]\[ (a-6)\left(a^2+6a+36\right) \][/tex]

Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the correct position in the answer box. Release your mouse button when the item is placed. If you change your mind, drag the item to the trashcan. Click the trashcan to clear all your answers.



Answer :

Sure, we'll solve the polynomial multiplication step-by-step and write the result in descending powers of [tex]\(a\)[/tex].

Given the polynomials: [tex]\((a-6)\)[/tex] and [tex]\((a^2 + 6a + 36)\)[/tex].

Here are the steps to multiply them together:

1. Expand the Multiplication:
We'll multiply each term in the first polynomial by each term in the second polynomial.

[tex]\[ (a - 6) \cdot (a^2 + 6a + 36) \][/tex]

Let's distribute [tex]\( (a - 6) \)[/tex]:

[tex]\[ a \cdot (a^2 + 6a + 36) - 6 \cdot (a^2 + 6a + 36) \][/tex]

2. Distribute [tex]\(a\)[/tex]:
[tex]\[ a \cdot a^2 + a \cdot 6a + a \cdot 36 = a^3 + 6a^2 + 36a \][/tex]

3. Distribute [tex]\(-6\)[/tex]:
[tex]\[ -6 \cdot a^2 - 6 \cdot 6a - 6 \cdot 36 = -6a^2 - 36a - 216 \][/tex]

4. Combine Like Terms:
Now, we add the results from both distributions:

[tex]\[ a^3 + 6a^2 + 36a - 6a^2 - 36a - 216 \][/tex]

Combine the [tex]\(a^2\)[/tex] terms and the [tex]\(a\)[/tex] terms:

[tex]\[ a^3 + (6a^2 - 6a^2) + (36a - 36a) - 216 \][/tex]

Simplifying further:

[tex]\[ a^3 - 216 \][/tex]

So, the result of multiplying [tex]\((a-6)\)[/tex] by [tex]\((a^2 + 6a + 36)\)[/tex] is:

[tex]\[ a^3 - 216 \][/tex]

Write this answer in descending powers of [tex]\(a\)[/tex], as requested:

[tex]\[ a^3 - 216 \][/tex]