Factor completely, then place the answer in the proper location on the grid. Write the answer in descending powers of [tex]$x$[/tex].

[tex]\[ 6x^4 + 15x^3y^2 + 3x^2y^3 \][/tex]

[tex]\(\square\)[/tex] [tex]x[/tex] [tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex] [tex]5x[/tex] [tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex] [tex]3[/tex] [tex]\(\square\)[/tex] [tex]4[/tex] [tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex] [tex]9[/tex] [tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex]
[tex]\(\square\)[/tex] [tex]\({ }^2\)[/tex] [tex]\(\square\)[/tex]
[tex]3[/tex]
[tex]\({ }^4\)[/tex]
[tex]5[/tex]
[tex]\({ }^6\)[/tex]
[tex]7[/tex]
[tex]8[/tex]
[tex]9[/tex]
[tex]10[/tex]
[tex]x[/tex]
[tex]|y|[/tex]



Answer :

To factor the polynomial [tex]\(6x^4 + 15x^3y^2 + 3x^2y^3\)[/tex] completely, follow these steps:

1. Identify the Greatest Common Factor (GCF):
The GCF of the coefficients [tex]\(6, 15,\)[/tex] and [tex]\(3\)[/tex] is [tex]\(3\)[/tex]. For the variable part, the GCF for [tex]\(x^4, x^3,\)[/tex] and [tex]\(x^2\)[/tex] is [tex]\(x^2\)[/tex].

2. Factor out the GCF:
[tex]\[6x^4 + 15x^3y^2 + 3x^2y^3 = 3x^2(2x^2) + 3x^2(5xy^2) + 3x^2(y^3).\][/tex]

3. Rewrite the polynomial:
[tex]\[6x^4 + 15x^3y^2 + 3x^2y^3 = 3x^2(2x^2 + 5xy^2 + y^3).\][/tex]

Finally, the fully factored form of the polynomial in descending powers of [tex]\(x\)[/tex] is:
[tex]\[3x^2(2x^2 + 5xy^2 + y^3).\][/tex]

Therefore, placing the answer in the grid in the proper sequence:

[tex]\[\_ \_ \_ 3 \ x\ ^{2} (2 x^{2} \ + \ 5 x \ y^{2} \ + \ y^{3}).\][/tex]