D. Rule: [tex]$60 \div 2 x$[/tex]

\begin{tabular}{|l|l|l|l|l|}
\hline
Input [tex]$(x)$[/tex] & 0 & 1 & 2 & 3 \\
\hline
Output & & & 15 & \\
\hline
\end{tabular}



Answer :

Let's work through this step-by-step to determine the outputs for each input [tex]\( x \)[/tex] given the rule [tex]\( 60 \div 2x \)[/tex]:

1. For [tex]\( x = 0 \)[/tex]:
The rule is [tex]\( 60 \div 2x \)[/tex]. Plugging in [tex]\( x = 0 \)[/tex], we get:
[tex]\[ 60 \div 2 \cdot 0 \][/tex]
This involves division by zero, which is undefined. Therefore, the output cannot be determined and is represented as [tex]\( \text{None} \)[/tex] (undefined).

2. For [tex]\( x = 1 \)[/tex]:
The rule is [tex]\( 60 \div 2x \)[/tex]. Plugging in [tex]\( x = 1 \)[/tex], we get:
[tex]\[ 60 \div 2 \cdot 1 = 60 \div 2 = 30 \][/tex]
So, the output for [tex]\( x = 1 \)[/tex] is 30.0.

3. For [tex]\( x = 2 \)[/tex]:
The rule is [tex]\( 60 \div 2x \)[/tex]. Plugging in [tex]\( x = 2 \)[/tex], we get:
[tex]\[ 60 \div 2 \cdot 2 = 60 \div 4 = 15 \][/tex]
So, the output for [tex]\( x = 2 \)[/tex] is 15.0, which is already provided in the table.

4. For [tex]\( x = 3 \)[/tex]:
The rule is [tex]\( 60 \div 2x \)[/tex]. Plugging in [tex]\( x = 3 \)[/tex], we get:
[tex]\[ 60 \div 2 \cdot 3 = 60 \div 6 = 10 \][/tex]
So, the output for [tex]\( x = 3 \)[/tex] is 10.0.

Given all these calculations, we can complete the table as follows:

[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline Input $(x)$ & 0 & 1 & 2 & 3 \\ \hline Output & \text{None} & 30.0 & 15.0 & 10.0 \\ \hline \end{tabular} \][/tex]