Solve for the following expression:

[tex]\left(16^{\frac{1}{2}}\right)^{-6}[/tex]

Choose the correct answer:

A. [tex]\frac{1}{256}[/tex]

B. [tex]\frac{1}{96}[/tex]

C. [tex]\frac{1}{2}[/tex]

D. [tex]\frac{1}{4}[/tex]



Answer :

Sure, I'll help you understand the step-by-step solution for the given expression [tex]\(\left(16^{\frac{1}{2}}\right)^{-6}\)[/tex].

1. Understand the Expression:
- The expression you need to evaluate is [tex]\(\left(16^{\frac{1}{2}}\right)^{-6}\)[/tex].
- This expression involves two operations: finding the square root and raising to a negative power.

2. Calculate the Square Root:
- First, simplify [tex]\(16^{\frac{1}{2}}\)[/tex]. The notation [tex]\(16^{\frac{1}{2}}\)[/tex] represents the square root of 16.
- [tex]\(\sqrt{16} = 4\)[/tex].

3. Raise the Result to the Power of -6:
- Now take the result from the first step, which is 4, and raise it to the power of -6.
- [tex]\(4^{-6}\)[/tex].

4. Simplify the Expression:
- [tex]\(4^{-6}\)[/tex] means [tex]\(\frac{1}{4^6}\)[/tex].
- Calculate [tex]\(4^6\)[/tex]:
- [tex]\(4^2 = 16\)[/tex]
- [tex]\(4^4 = 16^2 = 256\)[/tex]
- [tex]\(4^6 = 256 \times 16 = 4096\)[/tex]

So, [tex]\(4^6 = 4096\)[/tex].

5. Combining Results:
- Therefore, [tex]\(\frac{1}{4^6} = \frac{1}{4096}\)[/tex].

6. Final Answer:
- The result [tex]\(\left(16^{\frac{1}{2}}\right)^{-6}\)[/tex] evaluates to [tex]\(0.000244140625\)[/tex].

Thus, [tex]\(\left(16^{\frac{1}{2}}\right)^{-6} = 0.000244140625\)[/tex].