Using rational approximations, what statement is true?

A. [tex]\sqrt{49} \ \textgreater \ 7[/tex]
B. [tex]\sqrt{48} \ \textless \ \sqrt{36}[/tex]
C. [tex]\sqrt{48} \ \textgreater \ \sqrt{36}[/tex]
D. [tex]\sqrt{49} \ \textless \ 7[/tex]



Answer :

Let's analyze each statement one by one using the results from our computations.

1. Statement: [tex]\( \sqrt{49} > 7 \)[/tex]

To evaluate this, we first find the value of [tex]\( \sqrt{49} \)[/tex].
[tex]\[ \sqrt{49} = 7.0 \][/tex]
Thus, the statement becomes:
[tex]\[ 7.0 > 7 \][/tex]
This is clearly false.

2. Statement: [tex]\( \sqrt{48} < \sqrt{36} \)[/tex]

To evaluate this, we need to find the values of [tex]\( \sqrt{48} \)[/tex] and [tex]\( \sqrt{36} \)[/tex].
[tex]\[ \sqrt{48} \approx 6.928 \quad \text{and} \quad \sqrt{36} = 6.0 \][/tex]
Thus, the statement becomes:
[tex]\[ 6.928 < 6.0 \][/tex]
This is clearly false.

3. Statement: [tex]\( \sqrt{48} > \sqrt{36} \)[/tex]

Again, using the values found:
[tex]\[ \sqrt{48} \approx 6.928 \quad \text{and} \quad \sqrt{36} = 6.0 \][/tex]
The statement becomes:
[tex]\[ 6.928 > 6.0 \][/tex]
This is true.

4. Statement: [tex]\( \sqrt{49} < 7 \)[/tex]

Using the value of [tex]\( \sqrt{49} \)[/tex]:
[tex]\[ \sqrt{49} = 7.0 \][/tex]
Thus, the statement becomes:
[tex]\[ 7.0 < 7 \][/tex]
This is clearly false.

Based on the evaluation of each statement, the correct statement is:

[tex]\[ \sqrt{48} > \sqrt{36} \][/tex]