The volume of a rectangular prism is 2.5 cubic feet. The prism has a height of 15 inches. What is the area, in square inches, of the base of the prism?

\begin{tabular}{|c|}
\hline Unit Conversion Table \\
\hline [tex]$1 \text{ ft}^3 = 1,728 \text{ in}^3$[/tex] \\
[tex]$1 \text{ ft}^2 = 144 \text{ in}^2$[/tex] \\
[tex]$1 \text{ ft} = 12 \text{ in}$[/tex] \\
\hline
\end{tabular}

Type the number in the box.
[tex]\[\boxed{\text{square inches}}\][/tex]



Answer :

To find the area of the base of the rectangular prism, follow these steps:

1. Determine the volume in cubic inches:
- First, note that the volume of the rectangular prism is given in cubic feet, which is 2.5 cubic feet.
- We need to convert this volume into cubic inches.
- From the unit conversion table, [tex]\(1 \text{ cubic foot} = 1728 \text{ cubic inches}\)[/tex].
- Multiply the volume in cubic feet by this conversion factor:
[tex]\[ 2.5 \text{ cubic feet} \times 1728 \text{ cubic inches per cubic foot} = 4320 \text{ cubic inches} \][/tex]

2. Use the volume formula for a rectangular prism:
- The volume [tex]\(V\)[/tex] of a rectangular prism can be expressed as the product of its base area [tex]\(A\)[/tex] and its height [tex]\(h\)[/tex], i.e.,
[tex]\[ V = A \times h \][/tex]
- We need to find the base area [tex]\(A\)[/tex].
- We have the volume [tex]\(V = 4320 \text{ cubic inches}\)[/tex] and the height [tex]\(h = 15 \text{ inches}\)[/tex].

3. Solve for the base area:
- Rearrange the volume formula to solve for the base area [tex]\(A\)[/tex]:
[tex]\[ A = \frac{V}{h} = \frac{4320 \text{ cubic inches}}{15 \text{ inches}} = 288 \text{ square inches} \][/tex]

Thus, the area of the base of the rectangular prism is [tex]\(\boxed{288} \text{ square inches}\)[/tex].