To expand the expression [tex]\((a + 3)(a - 2)\)[/tex], we can use the distributive property (also known as the FOIL method when dealing with binomials). Here’s a step-by-step explanation:
1. First, multiply each term in the first binomial by each term in the second binomial:
[tex]\[
(a + 3)(a - 2)
\][/tex]
2. Distribute 'a' from the first binomial to both terms in the second binomial:
[tex]\[
a \cdot a + a \cdot (-2)
\][/tex]
This results in:
[tex]\[
a^2 - 2a
\][/tex]
3. Next, distribute '3' from the first binomial to both terms in the second binomial:
[tex]\[
3 \cdot a + 3 \cdot (-2)
\][/tex]
This results in:
[tex]\[
3a - 6
\][/tex]
4. Combine all these results:
[tex]\[
a^2 - 2a + 3a - 6
\][/tex]
5. Combine the like terms:
[tex]\[
-2a + 3a = a
\][/tex]
6. So, the final expanded form of the expression is:
[tex]\[
a^2 + a - 6
\][/tex]
Therefore, the correctly expanded form of [tex]\((a + 3)(a - 2)\)[/tex] is [tex]\(a^2 + a - 6\)[/tex].