Place the indicated product in the proper location on the grid.

[tex]\[
(a+3)(a-2)
\][/tex]

[tex]\[
\square \, a \, \square
\][/tex]

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & . & - & < & > & \leq & \geq & + & a & b & c & x & y \\
\hline
z & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}



Answer :

To expand the expression [tex]\((a + 3)(a - 2)\)[/tex], we can use the distributive property (also known as the FOIL method when dealing with binomials). Here’s a step-by-step explanation:

1. First, multiply each term in the first binomial by each term in the second binomial:

[tex]\[ (a + 3)(a - 2) \][/tex]

2. Distribute 'a' from the first binomial to both terms in the second binomial:

[tex]\[ a \cdot a + a \cdot (-2) \][/tex]

This results in:

[tex]\[ a^2 - 2a \][/tex]

3. Next, distribute '3' from the first binomial to both terms in the second binomial:

[tex]\[ 3 \cdot a + 3 \cdot (-2) \][/tex]

This results in:

[tex]\[ 3a - 6 \][/tex]

4. Combine all these results:

[tex]\[ a^2 - 2a + 3a - 6 \][/tex]

5. Combine the like terms:

[tex]\[ -2a + 3a = a \][/tex]

6. So, the final expanded form of the expression is:

[tex]\[ a^2 + a - 6 \][/tex]

Therefore, the correctly expanded form of [tex]\((a + 3)(a - 2)\)[/tex] is [tex]\(a^2 + a - 6\)[/tex].