a. If [tex]\hat{i}, \hat{j}[/tex], and [tex]\hat{k}[/tex] are unit vectors along the [tex]x[/tex], [tex]y[/tex], and [tex]z[/tex] axes respectively, find [tex]\hat{i} \cdot(\hat{j} \times \hat{k})[/tex].

b. Can the sum of two equal vectors be equal to either of the vectors?

c. If [tex]\vec{A} \cdot \vec{B} = 0[/tex], what is the angle between [tex]\vec{A}[/tex] and [tex]\vec{B}[/tex]?



Answer :

Let's address each of the parts of the question step-by-step:

### b. Can the sum of two equal vectors be equal to either of the vectors?

Given two equal vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{A}\)[/tex], their sum is:

[tex]\[ \vec{A} + \vec{A} = 2\vec{A} \][/tex]

If we compare [tex]\(2\vec{A}\)[/tex] with [tex]\(\vec{A}\)[/tex], we can see that [tex]\(2\vec{A}\)[/tex] is not equal to [tex]\(\vec{A}\)[/tex] because it is twice the magnitude of [tex]\(\vec{A}\)[/tex].

Hence, the sum of two equal vectors [tex]\(\vec{A} + \vec{A}\)[/tex] cannot be equal to either one of the original vectors. Thus, the answer to this question is False.

### c. If [tex]\(\vec{A} \cdot \vec{B} = 0\)[/tex], what is the angle between [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]?

When the dot product of two vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] is zero, it indicates that the vectors are orthogonal (perpendicular) to each other. The dot product formula is given by:

[tex]\[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \][/tex]

Where [tex]\(\theta\)[/tex] is the angle between the vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]. Given [tex]\(\vec{A} \cdot \vec{B} = 0\)[/tex], we can deduce:

[tex]\[ 0 = |\vec{A}| |\vec{B}| \cos \theta \][/tex]

Since the magnitudes [tex]\(|\vec{A}|\)[/tex] and [tex]\(|\vec{B}|\)[/tex] are not zero, the equation reduces to:

[tex]\[ \cos \theta = 0 \][/tex]

The angle [tex]\(\theta\)[/tex] for which [tex]\(\cos \theta = 0\)[/tex] is:

[tex]\[ \theta = 90^\circ \][/tex]

Therefore, the angle between [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] is [tex]\(90\)[/tex] degrees.

### a. If [tex]\(\hat{i}, \hat{j}\)[/tex], and [tex]\(\hat{k}\)[/tex] are unit vectors along the [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex]-axis respectively, find [tex]\(\hat{i} \cdot (\hat{j} \times \hat{k})\)[/tex].

The cross product [tex]\(\hat{j} \times \hat{k}\)[/tex] yields a vector. The unit vectors [tex]\(\hat{j}\)[/tex] and [tex]\(\hat{k}\)[/tex] follow the right-hand rule in a Cartesian coordinate system. According to the right-hand rule, the cross product [tex]\(\hat{j} \times \hat{k}\)[/tex] results in the unit vector along the [tex]\(x\)[/tex]-axis:

[tex]\[ \hat{j} \times \hat{k} = \hat{i} \][/tex]

Then, the dot product of [tex]\(\hat{i}\)[/tex] with itself is:

[tex]\[ \hat{i} \cdot \hat{i} = |\hat{i}| |\hat{i}| \cos 0^\circ = 1 \cdot 1 \cdot 1 = 1 \][/tex]

Therefore:

[tex]\[ \hat{i} \cdot (\hat{j} \times \hat{k}) = 1 \][/tex]

So, the result for [tex]\(\hat{i} \cdot (\hat{j} \times \hat{k})\)[/tex] is [tex]\(1\)[/tex].