Select the correct answer.

The volume of helium in a blimp is [tex]6.28 \times 10^9[/tex] milliliters. The density of helium in the blimp is [tex]0.1786 \frac{\text{kilogram}}{\text{meter}^3}[/tex]. Find the mass of the helium in the blimp. (Hint: [tex]1,000 \text{L} = 1[/tex] cubic meter.)

A. [tex]1,120 \text{kg}[/tex]
B. [tex]1.12 \text{kg}[/tex]
C. [tex]3.52 \times 10^7 \text{kg}[/tex]
D. [tex]2,840 \text{kg}[/tex]



Answer :

To find the mass of helium in the blimp, we need to follow a series of steps that involve the conversion of units and the application of the formula for mass. Here’s a detailed breakdown of the solution:

1. Convert Volume from Milliliters to Cubic Meters:
- The given volume of helium is [tex]\(6.28 \times 10^9\)[/tex] milliliters.
- We know that [tex]\(1\)[/tex] liter is equivalent to [tex]\(1000\)[/tex] milliliters, and [tex]\(1\)[/tex] cubic meter is equivalent to [tex]\(1000\)[/tex] liters.
- Thus, to convert milliliters to cubic meters, we use the conversion factor [tex]\(1 \text{ cubic meter} = 1000 \text{ liters} = 1,000,000 \text{ milliliters}\)[/tex].

So, we calculate the volume in cubic meters as follows:
[tex]\[ \text{Volume in cubic meters} = \frac{6.28 \times 10^9 \text{ milliliters}}{1,000,000} = 6280 \text{ cubic meters} \][/tex]

2. Calculate the Mass of Helium:
- The density of helium given is [tex]\(0.1786 \text{ kilograms per cubic meter}\)[/tex].
- Mass is determined by multiplying the volume by the density:

[tex]\[ \text{Mass} = \text{Volume} \times \text{Density} \][/tex]

Substituting the values we have:
[tex]\[ \text{Mass} = 6280 \text{ cubic meters} \times 0.1786 \text{ kilograms per cubic meter} = 1121.608 \text{ kilograms} \][/tex]

Thus, the mass of the helium in the blimp is approximately [tex]\(1121.608\)[/tex] kilograms.

Among the provided options, the one that most closely matches this value is:

A. [tex]\(1,120 \text{ kilograms}\)[/tex]

So, the correct answer is [tex]\( \boxed{1,120 \text{ kilograms}} \)[/tex].