Answer :

To convert radians to degrees, we need to use the relationship between these two units. We know that [tex]\( \pi \)[/tex] radians are equivalent to 180 degrees. Therefore, to convert radians to degrees, we can use the formula:

[tex]\[ \text{degrees} = \text{radians} \times \left( \frac{180}{\pi} \right) \][/tex]

For the given problem, we need to determine how many degrees are equivalent to [tex]\( \frac{29 \pi}{18} \)[/tex] radians.

1. First, identify the number of radians:
[tex]\[ \text{radians} = \frac{29 \pi}{18} \][/tex]

2. Use the conversion factor between radians and degrees:
[tex]\[ \text{degrees} = \text{radians} \times \left( \frac{180}{\pi} \right) \][/tex]

3. Substitute [tex]\(\frac{29 \pi}{18}\)[/tex] in place of radians:
[tex]\[ \text{degrees} = \frac{29 \pi}{18} \times \left( \frac{180}{\pi} \right) \][/tex]

4. Cancel out [tex]\(\pi\)[/tex] from the numerator and denominator:
[tex]\[ \text{degrees} = \frac{29 \times 180}{18} \][/tex]

5. Simplify the fraction:
[tex]\[ \frac{29 \times 180}{18} = 29 \times 10 = 290 \][/tex]

So, [tex]\(\frac{29 \pi}{18}\)[/tex] radians are equal to 290 degrees.

Therefore, the correct answer is:
290