Evaluate the limit:

[tex]\[
\lim _{x \rightarrow -6}\left(\frac{1-8x}{1+8x}\right)^3
\][/tex]

Enter DNE if the limit does not exist.

Limit [tex]\(=\)[/tex] [tex]\(\square\)[/tex]



Answer :

To evaluate the limit

[tex]\[ \lim _{x \rightarrow-6} \left(\frac{1 - 8x}{1 + 8x}\right)^3, \][/tex]

we can break it down into simpler steps.

1. Substitute [tex]\( x = -6 \)[/tex] into the function:

[tex]\[ \left(\frac{1 - 8(-6)}{1 + 8(-6)}\right)^3. \][/tex]

2. Simplify the numerator and denominator separately:

- For the numerator:
[tex]\[ 1 - 8(-6) = 1 + 48 = 49. \][/tex]

- For the denominator:
[tex]\[ 1 + 8(-6) = 1 - 48 = -47. \][/tex]

3. Combine the numerator and denominator:

[tex]\[ \left( \frac{49}{-47} \right)^3 = \left( -\frac{49}{47} \right)^3. \][/tex]

4. Simplify the expression:

[tex]\[ \left( -\frac{49}{47} \right)^3 = -\left( \frac{49}{47} \right)^3 = -\frac{49^3}{47^3}. \][/tex]

Now we evaluate the powers in the fraction:

[tex]\[ 49^3 = 49 \times 49 \times 49 = 117649, \][/tex]

and

[tex]\[ 47^3 = 47 \times 47 \times 47 = 103823. \][/tex]

5. Combine the results:

[tex]\[ - \frac{117649}{103823}. \][/tex]

Therefore, the limit is

[tex]\[ \boxed{-\frac{117649}{103823}}. \][/tex]