[tex]$
4x^2 - \frac{1}{4} = ?
$[/tex]

Escolha 1 resposta:

A. [tex]$\left(2x + \frac{1}{2}\right)\left(2x - \frac{1}{2}\right)$[/tex]

B. [tex]$\left(x + \frac{1}{2}\right)\left(2x - \frac{1}{2}\right)$[/tex]

C. [tex]$\left(x + \frac{1}{2}\right)\left(x - \frac{1}{2}\right)$[/tex]

D. [tex]$\left(2x + \frac{1}{2}\right)\left(x - \frac{1}{2}\right)$[/tex]



Answer :

To factor the expression [tex]\(4x^2 - \frac{1}{4}\)[/tex], let's follow these steps:

1. Identify the form of the given expression:
[tex]\[ 4x^2 - \frac{1}{4} \][/tex]

2. Notice that this expression is a difference of squares:
[tex]\[ 4x^2 - \frac{1}{4} = (2x)^2 - \left(\frac{1}{2}\right)^2 \][/tex]

3. Recall the factoring formula for the difference of squares, which is:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]

4. Applying the difference of squares formula to our expression:
[tex]\[ a = 2x \quad \text{and} \quad b = \frac{1}{2} \][/tex]
Thus,
[tex]\[ 4x^2 - \frac{1}{4} = (2x - \frac{1}{2})(2x + \frac{1}{2}) \][/tex]

5. Verify if our factored expression matches any of the given choices. Let’s compare:
- (A) [tex]\(\left(2x + \frac{1}{2}\right)\left(2x - \frac{1}{2}\right)\)[/tex]
- (B) [tex]\(\left(x + \frac{1}{2}\right)\left(2x - \frac{1}{2}\right)\)[/tex]
- (C) [tex]\(\left(x + \frac{1}{2}\right)\left(x - \frac{1}{2}\right)\)[/tex]
- (D) [tex]\(\left(2x + \frac{1}{2}\right)\left(x - \frac{1}{2}\right)\)[/tex]

The factored form [tex]\((2x - \frac{1}{2})(2x + \frac{1}{2})\)[/tex] matches choice (A).

Therefore, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]