Answer :

Given the points [tex]\((-6,3)\)[/tex] and [tex]\((3,6)\)[/tex], we will calculate the following:

1. The difference in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] coordinates (delta)^:
[tex]\[ \Delta x = x_2 - x_1 = 3 - (-6) = 9 \][/tex]
[tex]\[ \Delta y = y_2 - y_1 = 6 - 3 = 3 \][/tex]

2. The midpoint of the line segment connecting the two points:
[tex]\[ \text{Midpoint } \left(x_m, y_m\right) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]
[tex]\[ x_m = \frac{-6 + 3}{2} = \frac{-3}{2} = -1.5 \][/tex]
[tex]\[ y_m = \frac{3 + 6}{2} = \frac{9}{2} = 4.5 \][/tex]

3. The slope [tex]\(m\)[/tex] of the line passing through the two points:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{3}{9} = \frac{1}{3} \approx 0.3333 \][/tex]

4. The distance between the two points:
[tex]\[ \text{Distance} = \sqrt{(\Delta x)^2 + (\Delta y)^2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{9^2 + 3^2} = \sqrt{81 + 9} = \sqrt{90} \approx 9.4868 \][/tex]

5. The equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex]:
Using the point [tex]\((-6, 3)\)[/tex]:
[tex]\[ y = mx + b \Rightarrow 3 = \left(\frac{1}{3}\right)(-6) + b \][/tex]
Solving for [tex]\(b\)[/tex]:
[tex]\[ 3 = -2 + b \Rightarrow b = 3 + 2 = 5 \][/tex]

Thus, the various properties and calculations related to the points [tex]\((-6,3)\)[/tex] and [tex]\((3,6)\)[/tex] are:

- [tex]\(\Delta x = 9\)[/tex]
- [tex]\(\Delta y = 3\)[/tex]
- Midpoint: [tex]\((-1.5, 4.5)\)[/tex]
- Slope: [tex]\(\approx 0.3333\)[/tex]
- Distance: [tex]\(\approx 9.4868\)[/tex]
- y-intercept [tex]\(b\)[/tex] of the line: 5