Find the sum.

[tex]\[ (-7b + 8c) - (12a + 14) + (5a + 5b) \][/tex]

A. [tex]\(-7a + 12b + 8c + 14\)[/tex]
B. [tex]\(-7a - 2b + 8c - 14\)[/tex]
C. [tex]\(17a - 2b + 8c + 14\)[/tex]
D. [tex]\(17a - 2b + 8c - 14\)[/tex]



Answer :

To find the sum of the given expressions, let's break down the problem and combine like terms step-by-step.

Start with the given expression:
[tex]$ (-7b + 8c) - (12a + 14) + (5a + 5b) $[/tex]

Let's break it down:
1. Distribute the minus sign through the second group:
[tex]$ (-7b + 8c) - 12a - 14 + (5a + 5b) $[/tex]

2. Now, group all the [tex]\(a\)[/tex]-terms, [tex]\(b\)[/tex]-terms, and [tex]\(c\)[/tex]-terms together:
- Combine the [tex]\(a\)[/tex]-terms:
[tex]$ -12a + 5a = -7a $[/tex]

- Combine the [tex]\(b\)[/tex]-terms:
[tex]$ -7b + 5b = -2b $[/tex]

- The [tex]\(c\)[/tex]-term remains unchanged:
[tex]$ 8c $[/tex]

3. Combine the constant terms:
- Combine the constants:
[tex]$ -14 $[/tex]

Thus, after combining like terms, the expression simplifies to:
[tex]$ -7a - 2b + 8c - 14 $[/tex]

Therefore, the simplified sum of the given expression is:
[tex]$ -7a - 2b + 8c - 14 $[/tex]