Evaluate the following limit by simplifying the expression (first answer box) and then evaluating the limit (second answer box).

[tex]\[
\lim_{x \rightarrow 4} \frac{x-4}{\sqrt{x}-\sqrt{4}} = \lim_{x \rightarrow 4}
\][/tex]
[tex]\[
\square
\][/tex]
[tex]\[
\square
\][/tex]

Hint: Treat [tex]\( x-4 \)[/tex] as a difference of squares.

Note: In your written solution, you should write the limit statement [tex]\( \lim_{x \rightarrow 4} \)[/tex] in every step except the last one, where the limit is finally evaluated.



Answer :

Sure, let's solve the following limit step-by-step:
[tex]\[ \lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-\sqrt{4}} \][/tex]

First, we treat [tex]\(x-4\)[/tex] as a difference of squares. Notice that [tex]\(x\)[/tex] can be rewritten to show the difference of squares:

[tex]\[ x - 4 = (\sqrt{x})^2 - (2)^2 \][/tex]

Next, we apply the difference of squares factorization:

[tex]\[ (\sqrt{x})^2 - (2)^2 = (\sqrt{x} - 2)(\sqrt{x} + 2) \][/tex]

So, the given limit becomes:

[tex]\[ \lim _{x \rightarrow 4} \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{\sqrt{x} - \sqrt{4}} \][/tex]

Note that [tex]\(\sqrt{4} = 2\)[/tex], so we can simplify the expression further by canceling out [tex]\(\sqrt{x} - 2\)[/tex]:

[tex]\[ \lim _{x \rightarrow 4} \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{\sqrt{x} - 2} \][/tex]

Cancelling [tex]\(\sqrt{x} - 2\)[/tex] from both the numerator and the denominator (as long as [tex]\(x \neq 4\)[/tex]):

[tex]\[ \lim _{x \rightarrow 4} (\sqrt{x} + 2) \][/tex]

Now, we can evaluate the limit by substituting [tex]\(x = 4\)[/tex] in the simplified expression:

[tex]\[ \sqrt{4} + 2 = 2 + 2 = 4 \][/tex]

So, the simplified expression and the value of the limit are:

[tex]\[ \boxed{\sqrt{x} + 2} \][/tex]
[tex]\[ \boxed{4} \][/tex]